
Bitext Maps and Alignment via Pattern
Recognition

I. D a n M e l a m e d *
West Group

Texts that are available in two languages (bitexts) are becoming more and more plentiful, both in
private data warehouses and on publicly accessible sites on the World Wide Web. As with other
kinds of data, the value ofbitexts largely depends on the efficacy of the available data mining tools.
The first step in extracting useful information from bitexts is to find corresponding words and~or
text segment boundaries in their two halves (bitext maps).

This article advances the state of the art ofbitext mapping by formulating the problem in terms
of pattern recognition. From this point of view, the success of a bitext mapping algorithm hinges
on how well it performs three tasks: signal generation, noise filtering, and search. The Smooth
Injective Map Recognizer (SIMR) algorithm presented here integrates innovative approaches to
each of these tasks. Objective evaluation has shown that SIMR's accuracy is consistently high for
language pairs as diverse as French~English and Korean~English. If necessary, S IMR's bitext maps
can be efficiently converted into segment alignments using the Geometric Segment Alignment
(GSA) algorithm, which is also presented here.

SIMR has produced bitext maps for over 200 megabytes of French-English bitexts. GSA has
converted these maps into alignments. Both the maps and the alignments are available from the
Linguistic Data Consortium}

1. Introduction

Existing translations contain more solutions to more translation prob-
lems than any other existing resource (Isabelle 1992).

Although the above statement was made about translation problems faced by human
translators, recent research (Brown et al. 1993; Melamed 1996b) suggests that it also
applies to problems in machine translation. Texts that are available in two languages
(bitexts) (Harris 1988) also play a pivotal role in various less automated applications.
For example, bilingual lexicographers can use bitexts to discover new cross-language
lexicalization patterns (Catizone, Russell, and Warwick 1993; Gale and Church 1991b);
students of foreign languages can use one half of a bitext to practice their reading
skills, referring to the other half for translation when they get stuck (Nerbonne et al.
1997). Bitexts are of little use, however, without an automatic method for matching
corresponding text units in their two halves.

The bitext mapping problem can be formulated in terms of pattern recognition.
From this point of view, the success of a bitext mapping algorithm hinges on three
tasks: signal generation, noise filtering, and search. This article presents the Smooth
Injective Map Recognizer (SIMR), a generic pattern recognition algorithm that is partic-

* 610 Opperman Drive, #D1-66F, Eagan, MN, 55123
1 See http ://www. idc. upenn, edu/idc/catalog/html/text_html/hansfreng, html

(~) 1999 Association for Computational Linguistics

Computational Linguistics Volume 25, Number 1

terminus
X

.~_

._o

..,~

0 . o.. ~ " diagonal
o

0

II

origin x = c h a r a c t e r pos i t ion in text 1

Figure 1
A bitext space.

ularly well suited to mapping bitext correspondence. SIMR demonstrates that, given
effective signal generators and noise filters, it is possible to map bitext correspon-
dence with high accuracy in linear space and time. If necessary, SIMR can be used
with the Geometric Segment Alignment (GSA) algorithm, which uses segment bound-
ary information to reduce general bitext maps to segment alignments. Evaluations on
preexisting gold standards have shown that SIMR's bitext maps and GSA's alignments
are more accurate than those of comparable algorithms in the literature.

The article begins with a geometric interpretation of the bitext mapping problem
and a discussion of previous work. SIMR is detailed in Section 4 and evaluated in
Section 6. Section 7 discusses the formal relationship between bitext maps and seg-
ment alignments. The GSA algorithm for converting from the former to the latter is
presented in Section 7 and evaluated in Section 8.

2. Bitext Geometry

Each bitext defines a rectangular bitext space, as illustrated in Figure 1. The lower left
corner of the rectangle is the origin of the bitext space and represents the two texts'
beginnings. The upper right corner is the terminus and represents the texts' ends. The
line between the origin and the terminus is the main diagonal. The slope of the main
diagonal is the bitext slope.

Each bitext space is spanned by a pair of axes. The lengths of the axes are the
lengths of the two component texts. The axes of a bitext space are measured in char-
acters, because text lengths measured in characters correlate better than text lengths
measured in tokens (Gale and Church 1991a). This correlation is important for geo-
metric bitext mapping heuristics, such as those described in Section 4.4. Although the
axes are measured in characters, I will argue that word tokens are the optimum level
of analysis for bitext mapping. By convention, each token is assigned the position of
its median character.

Each bitext space contains a number of true points of correspondence (TPCs),
other than the origin and the terminus. TPCs exist both at the coordinates of matching

108

Melamed Bitext Maps and Alignment

text units and at the coordinates of matching text unit boundaries. If a token at position
p on the x-axis and a token at position q on the y-axis are translations of each other,
then the coordinate (p, q) in the bitext space is a TPC. If a sentence on the x-axis ends
at character r and the corresponding sentence on the y-axis ends at character s, then
the coordinate (r + .5, s + .5) is a TPC. The .5 is added because it is the inter-sentence
boundaries that correspond, rather than the last characters of the sentences. Similarly,
TPCs arise from corresponding boundaries between paragraphs, chapters, list items,
etc. Groups of TPCs with a roughly linear arrangement in the bitext space are called
chains.

Bitext maps are injective (1-to-1) partial functions in bitext spaces. A complete set
of TPCs for a particular bitext is the true bitext map (TBM). The purpose of a bitext
mapping algorithm is to produce bitext maps that are the best possible approximations
of each bitext's TBM.

3. Previous Work

Early bitext mapping algorithms focused on finding corresponding sentences (De-
bifi and San~nouda 1992; Kay and R6scheisen 1993). Although sentence maps are
too coarse for some bitext applications (Melamed 1996a; Macklovitch 1996), sentences
were a relatively easy starting point, because their order rarely changes during trans-
lation. Therefore, most sentence mapping algorithms ignore the possibility of crossing
correspondences and aim to produce only an alignment. Given parallel texts U and
V, an alignment is a segmentation of U and V into n segments each, so that for each
i, 1 < i < n, ui and vi are mutual translations. An aligned segment pair ai is an or-
dered pair (ui, vi). Thus, an alignment A can also be defined as a sequence of aligned
segments: A =- (al ,an). In 1991, two teams of researchers independently discov-
ered that sentences from bitexts involving clean translations can be aligned with high
accuracy just by matching sentence sequences with similar lengths (Brown, Lai, and
Mercer 1991; Gale and Church 1991a). Both teams approached the alignment problem
via maximum-likelihood estimation, but using different models.

Brown, Lai, and Mercer (1991) formulated the problem as a hidden Markov model
(HMM), based on a two-stage generative process. Stage one generated some number
of aligned segment pairs; stage two decided how many segments from each half of
the bitext to put in each aligned segment pair. Brown, Lai, and Mercer (1991) took
advantage of various lexical "anchors" in the bitext that they were experimenting
with. These anchors were also generated by the HMM, according to their respective
probability functions. All the hidden variables were estimated using the EM algorithm
(Dempster, Laird, and Rubin 1977).

Gale and Church (1991a) began with a less structured model and proceeded to
estimate its parameters through a series of approximations. Given the set A of all
possible alignments, the maximum-likelihood alignment is

Am~x = arg ~cax Pr(A I U, V). (1)

Gale and Church first assumed that the probability of any aligned segment pair is
independent of any other segment pair:

IAI
Amax = argmax] 1 Pr(ailui, vi). (2)

V A E , A a . a .
i=1

Next, they assumed that the only feature of b/i and v i that influences the probability of

109

Computational Linguistics Volume 25, Number 1

Table 1
Alignment algorithms that don't look at the words can fumble in bitext regions like this vote
record. Source: Chen (1996)

English French

Mr. McInnis? M. McInnis?
Yes. Oui.
Mr. Saunders? M. Saunders?
No. Non.
Mr. Cossitt? M. Cossitt?
Yes. Oui.

their alignment is a function d(ui, Vi) of the difference in their lengths, in characters:

IAI
Amax ~- arg max] 1 Pr(aild(ui, vi)). (3)

AC.A ~ a .
i = 1

By Bayes' rule,

Ial Pr(d(ui, vi)lai) Pr(ai)
Amax -- arg max] 1 (4)

- AE~4 ~'L Pr(d(ui, vi))
i = 1

Ignoring the normalizing constant Pr(d(ui, vi)) and taking the logarithm, Gale and
Church arrived at

IAI
Area x = arg max ~ log Pr(d(ui, Vi)lai) P r (a i) . (5)

v A G A
i = 1

Gale and Church empirically estimated the distributions Pr(d(ui, vi)lai) and Pr(ai) from
a hand-aligned training bitext and then used dynamic programming to solve Equa-
tion 5.

The length-based alignment algorithms work remarkably well on language pairs
like French/English and German/English, considering how little information they use.
However, length correlations are not as high when either of the languages involved
does not use a phonetically based alphabet (e.g., Chinese). Even in language pairs
where the length correlation is high, length-based algorithms can fumble in bitext
regions that contain many segments of similar length, like the vote record in Table 1.
The only way to ensure a correct alignment in such cases is to look at the words. For
this reason, Chen (1996) added a statistical translation model to the Brown, Lai, and
Mercer alignment algorithm, and Wu (1994) added a translation lexicon to the Gale
and Church alignment algorithm.

A translation lexicon T can be represented as a sequence of t entries, where each
entry is a pair of words: T ~ /(xl,yl) (xt, y t) l . Roughly speaking, Wu (1994) ex-
tended Gale and Church's (1991a) method with a matching function m(u, v,j), which
was equal to one whenever xj E u and yj E v for lexicon entry (xj, yj), and zero
otherwise• The information in the matching function was then used along with the
information in d(ui, Vi) to condition the probability of alignments in Equation 3:

IAI
Amax = arg max H Pr(aild(ui" vi) ; m(ui, vi, 1) m(ui, vi, t)). (6)

A •.A
i = 1

110

Melamed Bitext Maps and Alignment

From this point, Wu proceeded along the lines of Equations 4 and 5 and the dynamic
programming solution.

Another interesting approach is possible when part-of-speech taggers are available
for both languages. The insight that parts of speech are usually preserved in translation
enabled Papageorgiou, Cranias, and Piperidis (1994) to design an alignment algorithm
that maximizes the number of matching parts of speech in aligned segments. It is
difficult to compare this algorithm's performance to that of other algorithms in the
literature, because results were only reported for a relatively easy bitext. On this bitext,
the algorithm's performance was nearly perfect. A translation model between parts of
speech would not help on bitext regions like the one in Table 1.

The alignment algorithms described above work nearly perfectly given clean bi-
texts that have easily detectable sentence boundaries. However bitext mapping at the
sentence level is not an option for many bitexts (Church 1993). Sentences are often
difficult to detect, especially when punctuation is missing due to OCR errors. More
importantly, bitexts often contain lists, tables, titles, footnotes, citations and/or mark-
up codes that foil sentence alignment methods. Church's solution was to map bitext
correspondence at the level of the smallest text units--characters. Characters match
across languages to the extent that they participate in orthographic cognates--words
with similar meanings and spellings in different languages. Since there are far more
characters than sentences in any bitext, the quadratic computational complexity of this
approach presented an efficiency problem. Church showed how to use a high-band
filter to find a rough bitext map quickly.

Church's rough bitext maps were intended for input into Dagan, Church, and
Gale's (1993) slower algorithm for refinement. Dagan, Church, and Gale used the rough
bitext map to define a distance-based model of co-occurrence. Then they adapted
Brown et al.'s (1993) statistical translation Model 2 to work with this model of co-
occurrence. 2 The information in the translation model was more reliable than character-
level cognate information, so it produced a higher signal-to-noise ratio in the bitext
space. Therefore, Dagan, Church, and Gale were able to filter out many of the imper-
fections of the initial bitext map.

A limitation of Church's method, and therefore also of Dagan, Church, and Gale's
method, is that orthographic cognates exist only among languages with similar al-
phabets (Church et al. 1993). Fung investigated ways to make these methods useful
when cognates cannot be found. First, working with Church, she introduced the K-
Vec algorithm (Fung and Church 1994), which used a rough model of co-occurrence to
bootstrap a small translation lexicon. The translation lexicon indicated points of cor-
respondence in the bitext map, much the same way as matching character n-grams.
These points of correspondence could then be further refined using the methods pre-
viously developed by Church (1993) and Dagan, Church, and Gale (1993). Later, Fung
and McKeown (1994) improved on K-Vec by employing relative position offsets, in-
stead of a fixed model of co-occurrence. This strategy made the algorithm more robust
for noisier bitexts.

4. The Smooth Injective Map Recognizer (SIMR)

4.1 Overview
SIMR borrows several insights from previous work. Like the algorithms of
Gale and Church (1991a) and Brown, Lai, and Mercer (1991), SIMR exploits the cor-

2 See Melamed (1998a) for a general discussion of models of co-occurrence.

111

Computational Linguistics Volume 25, Number 1

relation between the lengths of mutual translations. Like char_align (Church 1993),
SIMR infers bitext maps from likely points of correspondence between the two texts,
points that are plotted in a two-dimensional space of possibilities. Unlike previous
methods, SIMR greedily searches for only a small chain of correspondence points at
a time.

The search begins in a small search rectangle in the bitext space, whose diagonal is
parallel to the main diagonal. The search for each chain alternates between a generation
phase and a recognition phase. In the generation phase, SIMR generates candidate
points of correspondence within the search rectangle that satisfy the supplied matching
predicate, as explained in Section 4.2. In the recognition phase, SIMR invokes the chain
recognition heuristic to select the most likely chain of true points of correspondence
(TPCs) among the generated points. The most likely chain of TPCs is the set of points
whose geometric arrangement most resembles the typical arrangement of TPCs. The
parameters of the chain recognition heuristic are optimized on a small training bitext.
If no suitable chains are found, the search rectangle is proportionally expanded by
the minimum possible amount and the generation-recognition cycle is repeated. The
rectangle keeps expanding until at least one acceptable chain is found. If more than
one acceptable chain is found in the same cycle, SIMR accepts the chain whose points
are least dispersed around its least-squares line. Each time SIMR accepts a chain, it
moves the search rectangle to another region of the bitext space to search for the next
chain.

SIMR employs a simple heuristic to select regions of the bitext space to search. To
a first approximation, true bitext maps are monotonically increasing functions. This
means that if SIMR accepts one chain, it should look for others either above and to
the right or below and to the left of the one it has just found. All SIMR needs is a
place to start the trace, and a good place to start is at the beginning. Since the origin
of the bitext space is always a TPC, the first search rectangle is anchored at the origin.
Subsequent search rectangles are anchored at the top right corner of the previously
found chain, as shown in Figure 2.

The expanding rectangle search strategy makes SIMR robust in the face of TBM
discontinuities. Figure 2 shows a segment of the TBM that contains a vertical gap (an
omission in the text on the x-axis). As the search rectangle grows, it will eventually
intersect with the TBM, even if the discontinuity is quite large (Melamed 1996a). The
noise filter described in Section 4.3 reduces the chances that SIMR will be led astray
by false points of correspondence.

4.2 Point Generation
Before SIMR can decide where to generate candidate points of correspondence, it
must be told which pairs of words have coordinates within the boundaries of the
current search rectangle. The mapping from tokens to axis positions is performed by
a language-specific axis generator (Melamed 1998b). SIMR calls one of its matching
predicates on each pair of tokens whose coordinate falls within the search rectangle.
A matching predicate is a heuristic for deciding whether two given tokens might be
mutual translations. Two kinds of information that a matching predicate can rely on
most often are cognates and translation lexicons.

Two words are orthographic cognates if they have the same meaning and similar
spellings. Similarity of spelling can be measured in more or less complicated ways.
The first published attempt to exploit cognates for bitext mapping purposes (Simard,
Foster, and Isabelle 1992) deemed two alphabetic tokens cognates if their first four
characters were identical. This criterion proved surprisingly effective, given its sim-
plicity. However, like all heuristics, it produced some false positives and some false

112

Melamed Bitext Maps and Alignment

• discovered TPC next ~ o
o undiscovered me(meccha in / J~ o ' ~
~ no ise ~ ~

J search
~ ~ ntier frontier ~

main ~ s e a r c h V . ~ search
diag/~,,~" ~ t frontier rectangle

~ o O O O .
• • previous chain

Figure 2
SIMR's "expanding rectangle" search strategy. The search rectangle is anchored at the top right
corner of the previously accepted chain. Its diagonal remains parallel to the main diagonal.

negatives. An example of a false negative is the word pair government and gouverne-
ment. The false positives were often words with a big difference in length, like conseil
and conservative. These examples suggest that a more accurate cognate criterion can
be driven by approximate string matching. For example, McEnery and Oakes (1995)
threshold the Dice coefficient of matching character bigrams in each pair of candidate
cognates. The matching predicates in SIMR's current implementation threshold the
Longest Common Subsequence Ratio (LCSR).

The LCSR of two tokens is the ratio of the length of their longest (not necessar-
ily contiguous) common subsequence (LCS) and the length of the longer token. In
symbols,

LCSR(A, B) = length[LCS(A, B)]
max[length(A), length(B)] " (7)

For example, gouvernement, which is 12 characters long, has 10 characters that appear
in the same order in government. So, the LCSR for these two words is 10/12. On the
other hand, the LCSR for conseil and conservative is only 6/12. A simple dynamic
programming algorithm (Bellman 1957) can compute the LCS in O(n2). A rather more
complicated algorithm can compute it in O(n log logn) time on average (Hunt and
Szymanski 1977).

When dealing with language pairs that have different alphabets, the matching
predicate can employ phonetic cognates. When language L1 borrows a word from
language L2, the word is usually written in L1 similarly to the way it sounds in L2.
Thus, French and Russian /portm0n0/ are cognates, as are English /sIstom/ and
Japanese/~isutemu/. For many languages, it is not difficult to construct an approxi-
mate mapping from the orthography to its underlying phonological form. Given such
a mapping for L1 and L2, it is possible to identify cognates despite incomparable
orthographies.

113

Computational Linguistics Volume 25, Number 1

Knight and Graehl (1997) have shown that it is possible to find phonetic cognates
even between languages whose writ ing systems are as different as those of English
and Japanese. They have built a weighted finite-state au tomaton (WFSA), based on
empirically est imated probabili ty distributions, for back-transliterating English loan
words writ ten in katakana into their original English form. The WFSA efficiently rep-
resents a large number of transliteration probabilities be tween words wri t ten in the
katakana and Roman alphabets. Standard finite-state techniques can efficiently find the
most likely path through the WFSA from a Japanese word wri t ten in katakana to an
English word. The weight of the most likely path is an estimate of the probabili ty that
the former is a transliteration of the latter. Thresholding this probabili ty would lead
to a phonetic cognate matching predicate for Engl ish/Japanese bitexts. The threshold
would need to be opt imized together with SIMR's other parameters , the same way
the LCSR threshold is current ly opt imized (see Section 5).

Cognates are more common in bitexts f rom more similar language pairs, and from
text genres where more word borrowing occurs, such as technical texts. In the non-
technical Canadian Hansards (parl iamentary debate transcripts publ ished in English
and in French), an LCSR cutoff of .58 finds cognates for roughly one quarter of all
text tokens. Even distantly related languages like English and Czech will share a large
number of or thographic cognates in the form of proper nouns, numerals , and punctu-
ation. When one or both of the languages involved is wri t ten in pictographs, cognates
can still be found among punctua t ion and numerals. However , these kinds of cognates
are usually too sparse to build an accurate bitext map from.

When the matching predicate cannot generate enough candidate correspondence
points based on cognates, its signal can be s t rengthened by a seed t ransla t ion l ex icon- -
a simple list of word pairs that are bel ieved to be mutual translations. Seed translation
lexicons can be extracted from machine-readable bilingual dictionaries (MRBDs) in
the rare cases where MRBDs are available. In other cases, they can be constructed
automatically or semiautomatical ly using any of several publ ished methods (Fung
and Church 1994; Fung 1995; Melamed 1996b; Resnik & Melamed 1997). 3 A matching
predicate based on a seed translation lexicon deems two candidate tokens to be mutua l
translations if the token pair appears in the lexicon. Since the matching predicate need
not be perfect ly accurate, the seed translation lexicons need not be perfectly accurate
either.

All the matching predicates described above can be f ine-tuned with stop lists for
one or both languages. For example, closed-class words are unlikely to have cog-
nates. Indeed, French/Engl ish words like a, an, on, and par often produce spurious
points of correspondence. The same problem is caused by faux amis ("false friends")
(Macklovitch 1996). These are words with similar spellings bu t different meanings in
different languages. For example, the French word librarie means 'bookstore, ' not
'library,' and actuel means 'current, ' not 'actual. ' A matching predicate can use a
list of closed-class words a n d / o r a list of pairs of faux amis to filter out spurious
matches.

3 Most published methods for automatically constructing translation lexicons require a preexisting bitext
map, which seems to render them useless for the purposes of bitext mapping algorithms. Fortunately,
only one seed translation lexicon is required for each language pair, or at worst for each sublanguage.
If we expect to map many bitexts in the same language pair, then it becomes feasible to spend a few
hours creating one bitext map by hand. Melamed (1996c) explains how to do so quickly and efficiently.
Better yet, Fung (1995) shows how it may be possible to extract a small translation lexicon and a rough
bitext map simultaneously.

114

Melamed Bitext Maps and Alignment

a

a la a

x
" ~ a

~o a

UJ

a

h h h h

F r e n c h t e x t

Figure 3
Frequent word types cause false points of correspondence that line up in rows and columns.

4.3 Noise Filter
Inspection of several bitext spaces has revealed a common noise pattern, illustrated in
Figure 3. It consists of correspondence points that line up in rows or columns associated
with frequent word types. Word types like the English article a can produce one or
more correspondence points for almost every sentence in the opposite text. Only one
point of correspondence in each row and column can be correct; the rest are noise. It
is difficult to measure exactly how much noise is generated by frequent tokens, and
the proportion is different for every bitext. Informal inspection of some bitext spaces
indicated that frequent tokens are often responsible for the lion's share of the noise.
Reducing this source of noise makes it much easier for SIMR to stay on track.

Other bitext mapping algorithms mitigate this source of noise either by assigning
lower weights to correspondence points associated with frequent word types (Church
1993) or by deleting frequent word types from the bitext altogether (Dagan, Church,
and Gale 1993). However, a word type that is relatively frequent overall can be rare
in some parts of the text. In those parts, the word type can provide valuable clues
to correspondence. On the other hand, many tokens of a relatively rare type can be
concentrated in a short segment of the text, resulting in many false correspondence
points. The varying concentration of identical tokens suggests that more localized noise
filters would be more effective. SIMR's localized search strategy provides a vehicle for
a localized noise filter.

The filter is based on the maximum point ambiguity level parameter. For each
point p = (x, y), let X be the number of points in column x within the search rectangle,
and let Y be the number of points in row y within the search rectangle. The ambiguity
level of p is defined as X + Y - 2. In particular, if p is the only point in its row and
in its column, then its ambiguity level is zero. The chain recognition heuristic ignores

115

Computational Linguistics Volume 25, Number I

O
O ~

O

O

Q

!

o I

false .

chain •

! •
off track"

Figure 4
SIMR's noise filter makes an important contribution to the signal-to-noise ratio in the bitext
space. Even if one chain of false points of correspondence slips by the chain recognition
heuristic, the expanding rectangle is likely to find its way back to the TBM trace before the
chain recognition heuristic accepts another chain.

points whose ambiguity level is too high. What makes this a localized filter is that
only points within the search rectangle count toward each other's ambiguity level.
The ambiguity level of a given point can change when the search rectangle expands
or moves.

The noise filter ensures that false points of correspondence are relatively sparse,
as illustrated in Figure 4. Even if one chain of false points of correspondence slips by
the chain recognition heuristic, the expanding rectangle is likely to find its way back
to the TBM trace before the chain recognition heuristic accepts another chain. If the
matching predicate generates a reasonably strong signal then the signal-to-noise ratio
will be high and SIMR is not likely to get lost, even though it is a greedy algorithm
with no ability to look ahead.

4.4 Point Selection
After noise •tering, most TPC chains conform to the pattern illustrated in Figure 5.
The pattern can be characterized by three properties:

• Injectivity: No two points in a chain of TPCs can have the same x- or
y-coordinates.

• Linearity: TPCs tend to line up straight. Recall that sets of points with a
roughly linear arrangement are called chains.

• Low Variance of Slope: The slope of a TPC chain is rarely much
different from the bitext slope.

SIMR exploits these properties to decide which chains might be TPC chains. First,
chains that lack the injectivity property are rejected outright. The remaining chains are
filtered using two threshold parameters: maximum point dispersal and maximum
angle deviation. The linearity of each chain is measured as the root mean squared

116

Melamed Bitext Maps and Alignment

98400

c
._o
(D
0
Ci..

98200

98000

97800

97600

97400

97200

97000

96800

109000

o o °

oo o % 0
0

G'
0

0 0

o

O

o 0 0

o oO

/

~o

oo o

oo

o o o

i i i

109500 110000 110500 111000
position in text 1

Figure 5
Typical pattern of candidate points of correspondence in a bitext space, after noise filtering.
The true points of correspondence trace the true bitext map parallel to the main diagonal.

distance of the chain's points from the chain's least-squares line. If this distance exceeds
the maximum point dispersal threshold, the chain is rejected. The angle of each chain's
least-squares line is compared to the arctangent of the bitext slope. If the difference
exceeds the maximum angle deviation threshold, the chain is rejected.

4.5 Reduction of the Search Space
In a search rectangle containing n points, there are 2 n possible chains--too many
to search by brute force. The properties of TPCs listed above provide two ways to
constrain the search.

The Linearity property leads to a constraint on the chain size. Chains of only a
few points are unreliable, because they often line up straight by coincidence. Chains
that are too big will span too long a segment of the TBM to be well approximated by
a line. SIMR uses a fixed chain size k, 6 < k < 11. The exact value of k is optimized
together with the other parameters, as described in Section 5. Fixing the chain size at
k reduces the number of candidate chains to (~) - n: (n-k)!k!"

For typical values of n and k, (~) can still reach into the millions. The Low Variance
of Slope property suggests another constraint: SIMR should consider only chains that
are roughly parallel to the main diagonal. Two lines are parallel if the perpendicular
displacement between them is constant. So, chains that are roughly parallel to the main
diagonal will consist of points that all have roughly the same displacement from the
main diagonal. 4 Points with similar displacement can be grouped together by sorting,
as illustrated in Figure 6. Then, chains that are most parallel to the main diagonal will
be contiguous subsequences of the sorted point sequence. In a region of the bitext

4 Displacement can be negative.

117

Computational Linguistics Volume 25, Number 1

subsequence 1 m a i n e

~subsequence 8

(points 1 thru 6)

°1 o2

 L47 J (points 5 thru 10) (points 8 thru 13)

Figure 6
The chain recognition heuristic exploits the Low Variance of Slope property of TPC chains. The
candidate points of correspondence are numbered according to their displacement from the
main diagonal. The chain most parallel to the main diagonal is always one of the contiguous
subsequences of this ordering. For a fixed chain size of 6, there are 13 - 6 + 1 = 8 contiguous
subsequences in this region of 13 points. Of these 8, the fifth subsequence is the best chain.

space containing n points, there will be only n - k + 1 such subsequences of length
k. The most computat ional ly expensive step in the chain recognit ion process is the
insertion of candidate points into the sorted point sequence.

4.6 Enhancements
The following subsections describe two of the more interesting enhancements in the
current SIMR implementat ion.

4.6.1 Overlapping Chains. SIMR's fixed chain size imposes a rather arbitrary fragmen-
tation on the TBM trace. Each chain starts at the top-right corner of the previously
found chain, but these chain boundar ies are independen t of discontinuities or angle
variations in the TBM trace. Therefore, SIMR is likely to miss TPCs wherever the TBM
is not linear. One way to make SIMR more robust is to start the search rectangle just
above the lowest point of the previously found chain, instead of just above the highest
point. If the chain size is fixed at k, then each linear stretch of s TPCs will result in
s - k + 1 over lapping chains.

Unfortunately, this solution introduces another problem: Two over lapping chains
can be inconsistent. The injective p roper ty of TBMs implies that wheneve r two (inter-
polated) chains overlap in the x or y dimensions, but are not identical in the region
of overlap, then one of the chains must be wrong. To resolve such conflicts, SIMR
employs a postprocessing algori thm to eliminate conflicting chains one at a time, until
all remaining chains are pairwise consistent. The conflict resolution algori thm is based
on the heuristic that chains that conflict with a larger n u m b er of other chains are more
likely to be wrong. The algori thm sorts all chains wi th respect to h o w m an y other
chains they conflict with, and eliminates them in this sort order, one at a time, until no

118

Melamed Bitext Maps and Alignment

maximum angle mare /
e > deviation threshold d iagona ls

o
O .- - - 'o

2nd pass
search space

Figure 7
Chain X is perfectly valid, even though it has a highly deviant slope. Such chains can be
recovered by re-searching regions between accepted chains. The slope of the local main
diagonal can be quite different from the slope of the global main diagonal.

conflicts remain. Whenever two or more chains are fled in the sort order, the conflict
resolution algorithm eliminates all but the chain with the least point dispersal.

4.6.2 Additional Search Passes. To ensure that SIMR rejects spurious chains, the max-
imum angle deviation threshold must be set low. However, like any heuristic filter,
this one will reject some perfectly valid candidates• If a more precise bitext map is
desired, some of these valid chains can be recovered during an extra sweep through
the bitext space. Since bitext maps are mostly injective, valid chains that are rejected
by the angle deviation filter usually occur between two accepted chains, as shown in
Figure 7. If Chains C and D are accepted as valid, then the slope of the TBM between
the end of Chain C and the start of Chain D must be much closer to the slope of
Chain X than to the slope of the main diagonal• Chain X should be accepted• Dur-
ing a second pass through the bitext space, SIMR searches for sandwiched chains in
any space between two accepted chains that is large enough to accommodate another
chain. This subspace of the bitext space will have its own main diagonal• The slope
of this local main diagonal can be quite different from the slope of the global main
diagonal.

An additional search through the bitext space also enables SIMR to recover chains
that were missed because of an inversion in the translation. Nonmonotonic TBM seg-
ments result in a characteristic map pattern, as a consequence of the injectivity of bitext
maps. SIMR has no problem with small nonmonotonic segments inside chains. How-
ever, the expanding rectangle search strategy can miss larger nonmonotonic segments
that do not fit inside one chain. In Figure 8, the vertical range of segment j corre-
sponds to a vertical gap in SIMR's first-pass map. The horizontal range of segment j
corresponds to a horizontal gap in SIMR's first-pass map.'Similarly, any nonmonotonic
segment of the TBM will occupy the intersection of a vertical gap and a horizontal gap
in the monotonic first-pass map. Furthermore, switched segments are usually adjacent
and relatively short• Therefore, to recover nonmonotonic segments of the TBM, SIMR
needs only to search gap intersections that are close to the first-pass map. There are
usually very few such intersections that are large enough to accommodate new chains,

119

Computational Linguistics Volume 25, Number 1

firs•t
a TPC
4- SIMR's ;

Z i -a: ! -~- II-I :e n --
. , : , i r :

tj

: : = : _i

..... i~i ~s~_g_ ~~i_i i i i ~_ iiiiii~_e iii_ i '~= L ~_

Figure 8
Segments i and j switched places during translation. Any nonmonotonic segment of the TBM
will occupy the intersection of a vertical gap and a horizontal gap in the monotonic first-pass
map. These larger nonmonotonic segments can be recovered during a second sweep through
the bitext space.

so the second-pass search requires only a small fraction of the computational effort of
the first pass.

5. Parameter Optimization

SIMR's parameters--the fixed chain size; the LCSR threshold used in the matching
predicate; and the thresholds for maximum point dispersal, maximum angle devi-
ation, and maximum point ambiguity--interact in complicated ways. Ideally, SIMR
should be reparameterized so that its parameters are pairwise independent. Then it
may be possible to optimize the parameters analytically, or at least in a probabilistic
framework. For now, the easiest way to optimize these parameters is via simulated
annealing (Vidal 1993), a simple general framework for optimizing highly interdepen-
dent parameter sets.

Simulated annealing requires an objective function to optimize. The objective func-
tion for bitext mapping should measure the difference between the TBM and the in-
terpolated bitext maps produced with the current parameter set. In geometric terms,
the difference is a distance. The TBM consists of a set of TPCs. The distance between
a bitext map and each TPC can be defined in a number of ways. The simplest metrics
are the horizontal distance or the vertical distance, but these metrics measure the error
with respect to only one language or the other. A more robust average is the distance
perpendicular to the main diagonal. In order to penalize large errors more heavily,
root mean squared (RMS) distance, rather than mean distance, should be minimized.

There is a slight complication in the computation of distances between two par-
tial functions, in that linear interpolation is not well-defined for nonmonotonic sets of
points. It would be incorrect to simply connect the dots left to right, because the result-

120

Melamed Bitext Maps and Alignment

0"

A
I

I

i
I

m
09
o
c
0
c

cO
I

I

, 0 "

I

I

M 2 I•, :e

• , 0 • • ' " . ' i

,, •..•-" M1

MI." "•

,0"
" •'' L

, , , o • M 2

0

M E R

. S e n t e n c e A

.O

Figure 9
Two text segments at the end of Sentence A were switched during translation, resulting in a
nonmonotonic segment• To interpolate injective bitext maps, nonmonotonic segments must be
encapsulated in Minimum Enclosing Rectangles (MERs). A unique bitext map can then be
interpolated by using the lower left and upper right comers of the MER (map M2), instead of
using the nonmonotonic correspondence points (function M1).

Table 2
SIMR accuracy on training bitexts for three language pairs.

Language Pair Number of Training TPCs Training Genre
RMS Error

in Characters

French / English 598 marketing report 6.6
Spanish / English 562 software manuals 5.5
Korean / English 615 military manuals 3.9

ing function may not be injective. To interpolate injective bitext maps, nonmonotonic
segments must be encapsulated in Minimum Enclosing Rectangles (MERs), as shown
in Figure 9. A unique bitext map results from interpolating between the lower left and
upper right comers of the MER, instead of using the nonmonotonic correspondence
points.

6. Evaluation of SIMR

SIMR's parameters were optimized by simulated annealing, as described in the pre-
vious section• A separate optimization was performed on separate training bitexts for
each of three language pairs. SIMR was then evaluated on previously unseen test
bitexts in the three language pairs• The objective function for optimization and the
evaluation metric were the root mean squared distance, in characters, between each
TPC and the interpolated bitext map produced by SIMR, where the distance was mea-
sured perpendicular to the main diagonal• Tables 2 and 3 report SIMR's errors on the
training and test bitexts, respectively•

The TBM samples used for training and testing were derived from segment align-
ments. All the bitexts had been manually aligned by bilingual annotators (Melamed

121

Computational Linguistics Volume 25, Number 1

Table 3
SIMR error estimates on different text genres in three language pairs.

Language Pair Bitext or Genre Number of RMS Error
Test TPCs in Characters

French / English parliamentary debates 7,123 5.7
CITI technical reports 365, 305, 176 4.4, 2.6, 9.9
other technical reports 561, 1,393 21, 14

court transcripts 1,377 3.9
U.N. annual report 2,049 12

I.L.O. report 7,129 6.4

Spanish / English software manuals 376, 151, 100, 349 4.6, 0.67, 5.2, 4.7

Korean / English military manuals 40, 88, 186, 299 2.6, 7.1, 25, 7.8
military messages 192 0.53

1997). The alignments were converted into sets of coordinates in the bitext space by
pairing the character positions at the ends of aligned segment pairs. This TBM sam-
pling method artificially reduced the error estimates. Most of the aligned segments
were sentences, which ended with a period. Whenever SIMR matched the periods
correctly, the interpolated bitext map was pulled close to the TPC, even though it
may have been much farther off in the middle of the sentence. Thus, the results in
Table 3 should be considered only relative to each other and to other results obtained
under the same experimental conditions. It would be impressive indeed if any bitext
mapping algorithm's actual RMS error were less than 1 character on bitexts involving
languages with different word order, such as English/Korean.

The matching predicates for French/English and Spanish/English relied on an
LCSR threshold to find cognates. The Korean text contained some Roman character
strings, so the matching predicate for Korean/English generated candidate points of
correspondence whenever one of these strings coordinated in the search rectangle
with an identical string in the English half of the bitext. A seed translation lexicon
was also used to strengthen the Korean/English signal. In addition, English, French,
Spanish and Korean stop lists were used to prevent matches of closed-class words.
The translation lexicon and stop lists had been previously developed independently
of the training and test bitexts.

The French/English part of the evaluation was performed on bitexts from the pub-
licly available corpus de bi-texte anglais-franfais (BAF) (Simard and Plamondon 1996).
SIMR's error distribution on the "parliamentary debates" bitext in this collection is
given in Table 4. This distribution can be compared to the error distributions reported
for the same test set by Dagan, Church, and Gale (1993), who reported parts of their
error distribution in words, rather than in characters: "In 55% of the cases, there is
no error in word_align's output (distance of 0), in 73% the distance from the correct
alignment is at most 1, and in 84% the distance is at most 3" (Dagan, Church, and
Gale 1993, 7). These distances were measured horizontally from the bitext map rather
than perpendicularly to the main diagonal. Given the bitext slope for that bitext and a
conservative estimate of 6 characters per word (including the space between words),
each horizontal word of error corresponds to just over 4 characters of error perpendic-
ular to the main diagonal. Thus, Dagan, Church, and Gale's "no error" is the same as

122

Melamed Bitext Maps and Alignment

Table 4
SIMR's error distribution on the French/English "parl iamentary debates" bitext. Errors were
measured perpendicular to the main diagonal.

Number of Test Points Error Range in Characters Fraction of Test Points

1 -101 .0001
2 -80 to -70 .0003
1 -70 to -60 .0001
5 -60 to -50 .0007
4 -50 to -40 .0006
6 -40 to -30 .0008
9 -30 to -20 .0013

29 -20 to -10 .0041
3,057 -10 to 0 .4292
3,902 0 to 10 .5478

43 10 to 20 .0060
28 20 to 30 .0039 ~
17 30 to 40 .0024
5 40 to 50 .0007
8 50 to 60 .0011
1 60 to 70 .0001
1 70 to 80 .0001
1 80 to 90 .0001
1 90 to 100 .0001
1 110 to 120 .0001
1 185 .0001

7,123 -101 to 185 1.000

Table 5
Comparison of error distributions for SIMR and word_align on the par l iamentary debates
bitext.

Error of at Most Error of at Most Error of at Most
Algori thm 2 Characters 6 Characters 14 Characters

word_align 55% 73% 84%
SIMR 93% 97% 98%

2 cha rac t e r s of e r ro r or less, i.e., less t h a n ha l f a w o r d . O n e w o r d of e r ro r is the s a m e
as an e r ro r of u p to 6 cha rac t e r s a n d 3 w o r d s are e q u i v a l e n t to 4 . 3 ½ = 14 charac te r s .
O n this bas is , Table 5 c o m p a r e s the a c c u r a c y of S IMR a n d w o r d _ a l i g n . 5

A n o t h e r i n t e r e s t i n g c o m p a r i s o n is in t e r m s of m a x i m u m error . C e r t a i n a p p l i c a t i o n s
of b i t ex t m a p s , such as the one d e s c r i b e d b y M e l a m e d (1996a), c an to l e ra t e m a n y s m a l l
e r ro r s b u t n o l a rge ones . A s s h o w n in Table 4, S IMR' s b i t ex t m a p w a s n e v e r off b y
m o r e t h a n 185 cha rac t e r s f r o m a n y of the 7,123 s e g m e n t b o u n d a r i e s . 185 c ha ra c t e r s
is a b o u t 1.5 t i m e s the l e n g t h of a n a v e r a g e s en t ence (M e l a m e d 1996a). The i n p u t to
w o r d _ a l i g n is the o u t p u t of c h a r _ a l i g n a n d D a g a n , C h u r c h , a n d Ga le (1993) h a v e
r e p o r t e d tha t w o r d _ a l i g n c a n n o t e s c a p e f r o m c h a r _ a l i g n ' s w o r s t e r rors . A n i n d e p e n -
d e n t i m p l e m e n t a t i o n of c h a r _ a l i g n (Miche l S ima rd , p e r s o n a l c o m m u n i c a t i o n) e r r e d
b y m o r e t h a n one t h o u s a n d cha rac t e r s on the s a m e bi text .

5 Error measurements at the character level are less susceptible to random variation than measurements
at the word level. Character-level measurements also have the advantage of being universally
applicable to all languages, including those in which words are difficult to identify automatically.

123

Computational Linguistics Volume 25, Number 1

The Spanish/English and Korean/English bitexts were hand-aligned when SIMR
was being ported to these language pairs. 6 The Spanish/English bitexts were drawn
from the Sun Solaris AnswerBooks and hand-aligned by Philip Resnik. The Korean/
English bitexts were provided by MIT's Lincoln Laboratories and hand-aligned by
Young-Suk Lee. Table 3 shows that SIMR's performance on Spanish/English and Ko-
rean/English bitexts is no worse than its performance on French/English bitexts.

The results in Table 3 were obtained using a version of SIMR that included all
the enhancements described in Section 4.6. It is interesting to consider the degree
to which each enhancement improves performance. I remapped the French/English
bitexts listed in Table 3 with two stripped-down versions of SIMR. One version was
basic SIMR without any enhancements. The other version incorporated overlapping
chains, but performed only one search pass. The deterioration in performance varied
widely. For example, on the parliamentary debates bitext, the RMS error rose from 5.7
to 16 when only one search pass was allowed, but rose only another 2 points to 18 using
non-overlapping chains. In contrast, on the U.N. annual report bitext, the extra search
passes made no difference at all but non-overlapping chains increased the RMS error
from 12 to 40. For most of the Other bitexts, each enhancement reduced the RMS error
by a few characters, compared to the basic version. However, the improvement was
not universal: the RMS error of the basic SIMR was 19 for the "other technical report"
on which the enhanced SIMR scored 21. The expected value of the enhancements is
difficult to predict, because each enhancement is aimed at solving a particular pattern
recognition problem, and each problem may or may not occur in a given bitext. The
relationship between geometric patterns in TPC chains and syntactic properties of
bitexts is a ripe research topic.

7. Alignment

SIMR has no idea that words are often used to make sentences. It just outputs a series
of corresponding token positions, leaving users free to draw their own conclusions
about how the texts' larger units correspond. However, many existing translators' tools
and machine translation strategies depend on aligned sentences or other aligned text
segments. What can SIMR do for them? Formally, an alignment is a correspondence
relation that does not permit crossing correspondences. The rest of this article presents
the Geometric Segment Alignment (GSA) algorithm, which uses segment boundary
information to reduce the correspondence relation in SIMR's output to a segment
alignment. The GSA algorithm can be applied equally well to sentences, paragraphs,
lists of items, or any other text units for which boundary information is available.

7.1 Correspondence is Richer than Alignment
A set of correspondence points, supplemented with segment boundary information,
expresses segment correspondence, which is a richer representation than segment
alignment. Figure 10 illustrates how segment boundaries form a grid over the bitext
space. Each cell in the grid represents the intersection of two segments, one from each
half of the bitext. A point of correspondence inside cell (X,y) indicates that some token
in segment X corresponds with some token in segment y; i.e., segments X and y corre-
spond. For example, Figure 10 indicates that segment e corresponds with segments G
and H.

In contrast to a correspondence relation, "an alignment is a segmentation of the

6 The porting method is detailed elsewhere (Melamed 1996c, 1997, 1998b).

124

Melamed Bitext Maps and Alignment

._~ h
X

: k g

o f
if)

o e

~ d
ffl

C

b
a

I l l l I
I l l l I

I o e

i '
i •
i •
I •

. i

i
i
I

. . . . I - - T - - I - - T ~ - - / I O T I
I ~ 1 1 t i o I I
i I l l I I I i

. . . . i - - T - - i - - T T i ~ T i
i I 1 ~ I I I I
i l l l I O i I
I I I I i O ~ r I

. . . . i - - T - - l - - l l - - i i l , T i

~ I I J O e . ~ i , i , I ,
i l l i l J , I ,
i l l I 1 1 r I ,

. . . . i I - ~ _ _ l _ _ + # _ _ 4 i i i ~ i
i i l l i i i i i i
i l l l i i i i i i
i i i i i i I i i i ,, ,,' ,: ,,' :, ,,'

I i i i i I I ~ I I
I I I I i i i t i I

A B C D E F G H I J K L

sentences on x-axis

Figure 10
Segment boundaries form a grid over the bitext space. Each cell in the grid represents the
product of two segments, one from each half of the bitext. A point of correspondence inside
cell (X,y) indicates that some token in segment X corresponds with some token in segment y;
i.e., the segments X and y correspond. So, for example, segment E corresponds with
segment d. The aligned blocks are outlined with solid lines.

two texts such that the nth segment of one text is the translation of the nth segment of
the other" (Simard, Foster, and Isabelle 1992, 68). For example, given the token corre-
spondences in Figure 10, the segment (G,H / should be aligned with the segment (e,f/. If
segments (X 1 , . . . , Xnl align with segments/Yl Yn)" then ((X 1 Xnl" (Yl Yn/)
is an aligned block. In geometric terms, aligned blocks are rectangular regions of the
bitext space, such that the sides of the rectangles coincide with segment boundaries,
and such that no two rectangles overlap either vertically or horizontally. The aligned
blocks in Figure 10 are outlined with solid lines.

SIMR's initial output has more expressive power than the alignment that can be
derived from it. One illustration of this difference is that segment correspondence can
represent order inversions, but segment alignment cannot. Inversions occur surpris-
ingly often in real bitexts, even for sentence-size segments (Church 1993). Figure 10
provides another illustration. If, instead of the point in cell (H,e), there was a point
in cell (G,tf), the correct alignment for that region would still be ((G,H/, (e,f/). If there
were points of correspondence in both (H,e) and (G,f), the correct alignment would
still be the same. Yet, the three cases are clearly different. If a lexicographer wanted to
see a word in segment G in its bilingual context, it would be useful to know whether
segment f is relevant.

7.2 The Geometric Segment Alignment (GSA) Algorithm
Given a sequence of segment boundaries for each half of a bitext, the Geometric Seg-
ment Alignment (GSA) algorithm reduces sets of correspondence points to segment
alignments. The algorithm's first step is to perform a transitive closure over the in-
put correspondence relation. For instance, if the input contains (G,e), (H,e), and (H,f),

125

Computational Linguistics Volume 25, Number 1

then GSA adds the pairing (G,f). Next, GSA forces all segments to be contiguous: If
segment Y corresponds with segments x and z, but not y, the pairing (Y,y) is added.
In geometric terms, these two operations arrange all cells that contain points of corre-
spondence into nonoverlapping rectangles, while adding as few cells as possible. The
result is an alignment relation.

A complete set of TPCs, together with appropriate boundary information, guar-
antees a perfect alignment. Alas, the points of correspondence postulated by SIMR are
neither complete nor noise-free. SIMR makes errors of omission and errors of commis-
sion. Fortunately, the noise in SIMR's output causes alignment errors in predictable
ways. GSA employs several backing-off heuristics to reduce the number of errors.

Typical errors of commission are stray points of correspondence like the one in
cell (H,e) in Figure 10. This point indicates that /G,H/ and ~e,f / should form a 2x2
aligned block, whereas the lengths of the component segments suggest that a pair of
l x I blocks is more likely. In a separate development bitext, I have found that SIMR
is usually wrong in these cases. To reduce such errors, GSA asks Gale & Church's
length-based alignment algorithm (Gale and Church 1991a; Michel Simard, personal
communication) for a second opinion on any aligned block that is not l x 1. When-
ever the length-based algorithm prefers a more fine-grained alignment, its judgement
overrules SIMR's.

Typical errors of omission are illustrated in Figure 10 by the complete absence
of correspondence points between segments /B,C,D/ and ~b,c/. This empty block of
segments is sandwiched between aligned blocks. It is highly likely that at least some
of these segments are mutual translations, despite SIMR's failure to find any points of
correspondence between them. Therefore, GSA treats all sandwiched empty blocks as
aligned blocks. If an empty block is not I x 1, GSA realigns it using Gale and Church's
length-based algorithm, just as it would realign any other many-to-many aligned
block.

The most problematic cases involve an error of omission adjacent to an error of
commission, as in blocks (// , /hi) and (/J,K/,/i/). If the point in cell (J,i) should re-
ally be in cell (J,h), then realignment inside the erroneous blocks would not solve the
problem. A naive solution is to merge these blocks and then to realign them using a
length-based method. Unfortunately, this kind of alignment pattern, i.e., 0 x I followed
by 2x 1, is surprisingly often correct. Length-based methods assign low probabilities
to such pattern sequences and usually get them wrong. Therefore, GSA also con-
siders the confidence level with which the length-based alignment algorithm reports
its realignment. If this confidence level is sufficiently high, GSA accepts the length-
based realignment; otherwise, the alignment indicated by SIMR's points of correspon-
dence is retained. The minimum confidence at which GSA trusts the length-based re-
alignment is a GSA parameter, which has been optimized on a separate development
bitext.

8. Evaluat ion of G S A

GSA processed two bitext maps produced by SIMR using two different matching
predicates. The first matching predicate relied only on cognates that pass a certain
LCSR threshold, as described in Section 4.2. The second matching predicate was like
the first, except that it also generated a point of correspondence whenever the input
token pair appeared as an entry in a translation lexicon. The translation lexicon was
automatically extracted from an MRBD (Cousin et al. 1991).

Bitexts involving millions of segments are becoming more and more common.
Before comparing bitext alignment algorithms in terms of accuracy, it is important

126

Melamed Bitext Maps and Alignment

Table 6
Comparison of bitext alignment algorithms' accuracy. One error is counted for each aligned
block in the reference alignment that is missing from the test alignment.

Errors, Given Errors, Not Given
Bitext Algorithm Aligned Paragraphs % Aligned Paragraphs %

"easy"
Hansard

(n = 7,123)

Gale and Church (1991a) not available 128 1.8
Simard, Foster, and Isabelle (1992) 114 1.6 171 2.4

S1MR/GSA 104 1.5 115 1.6
SIMR/GSA with MRBD 80 1.1 90 1.3

"hard"
Hansard

(n = 2,693)

Gale and Church (1991a) not available 80 3.0
Simard, Foster, and Isabelle (1992) 50 1.9 102 3.8

SIMR/GSA 50 1.9 61 2.3
SIMR/GSA with MRBD 45 1.7 48 1.8

to compare their asymptotic running times. In order to run a quadratic-time align-
ment algorithm in a reasonable amount of time on a large bitext, the bitext must be
presegmented into a set of smaller bitexts. When a bitext contains no easily recogniz-
able "anchors," such as paragraphs or sections, this first-pass alignment must be done
manually.

Given a reasonably good bitext map, GSA's expected running time is linear in the
number of input segment boundaries. In all the bitexts on which GSA was trained
and tested, the points of correspondence in SIMR's output were sufficiently dense
and accurate that GSA backed off to a quadratic-time alignment algorithm only for
very small aligned blocks. For example, when the seed translation lexicon was used in
SIMR's matching predicate, the largest aligned block that needed to be realigned was
5x5 segments. Without the seed translation lexicon, the largest realigned block was
7x7 segments. Thus, GSA can obviate the need to manually prealign large bitexts.

Table 6 compares GSA's accuracy on the "easy" and "hard" French/English bi-
texts with the accuracy of two other alignment algorithms, as reported by Simard,
Foster, and Isabelle (1992). The error metric counts one error for each aligned block
in the reference alignment that is missing from the test alignment. To account for the
possibility of modularizing the overall alignment task into paragraph alignment fol-
lowed by sentence alignment, Simard, Foster, and Isabelle (1992) have reported the
accuracy of their sentence alignment algorithm when a perfect alignment at the para-
graph level is given. SIMR/GSA was also tested in this manner, to enable the second
set of comparisons in Table 6.

Due to the scarcity of hand-aligned training bitexts at my disposal, GSA's backing-
off heuristics are somewhat ad hoc. Even so, GSA performs at least as well as, and
usually better than, other alignment algorithms for which comparable results have
been published. Chen (1996) has also published a quantitative evaluation of his align-
ment algorithm on these reference bitexts, but his evaluation was done post hoc. Since
the results in this article are based on a gold standard, they are not comparable to
Chen's results. Among other reasons, error rates based on a gold standard are some-
times inflated by errors in the gold standard and this was indeed the case for the gold
standard used here (see Melamed [1996a]). It is also an open question whether GSA
performs better than the algorithm proposed by Wu (1994). The two algorithms have
not yet been evaluated on the same test data. For now, I can offer only a theoretical
reason why SIMR+GSA should be more accurate than the algorithms of Chen and
Wu: Bitext maps lead to alignment more directly than a translation model (Chen 1996)

127

Computational Linguistics Volume 25, Number 1

or a translation lexicon (Wu 1994), because both segment alignments and bitext maps
are relations between token instances, rather than between token types.

More important than GSA's current accuracy is GSA's potential accuracy. With
a bigger development bitext, more effective backing-off heuristics can be developed.
Better input can also make a difference: GSA's accuracy will improve in lockstep with
SIMR's accuracy.

9. Conclus ion

The Smooth Injective Map Recognizer (SIMR) is based on innovative approaches to
each of the three main components of a bitext mapping algorithm: signal generation,
noise •tering, and search. The advances in signal generation stemmed from the use of
word-based matching predicates. When word-pair coordinates are plotted in a Carte-
sian bitext space, the geometric heuristics of existing sentence alignment algorithms
can be exploited just as easily and to a greater extent at the word level. The cognate
heuristic of character-based bitext mapping algorithms also works better at the word
level, because cognateness can be defined more precisely in terms of words, e.g., using
the Longest Common Subsequence Ratio. Most importantly, matching heuristics based
on existing translation lexicons can be defined only at the word level. When neither
cognates nor sentence boundaries can be found, we can still map bitexts in any pair of
languages using a small hand-constructed translation lexicon. To complement word-
based matching predicates, I have proposed localized noise filtering. Localized noise
filters are more accurate than global ones because they are sensitive to local variations
in noise distributions. The combination of a strong signal and an accurate noise filter
enables localized search heuristics. Localized search heuristics can directly exploit the
geometric tendencies of TPC chains in order to search the bitext space in linear space
and time. This level of efficiency is particularly important for large bitexts.

SIMR also advances the state of the art of bitext mapping on several other crite-
ria. Evaluation on preexisting gold standards has shown that SIMR can map bitexts
with high accuracy in a variety of language pairs and text genres, without getting
lost. SIMR is robust in the face of translation irregularities like omissions and allows
crossing correspondences to account for word-order differences. SIMR encapsulates
its language-specific heuristics, so that it can be ported to any language pair with a
minimal effort (Melamed 1997). These features make SIMR one of the most widely
applicable bitext mapping algorithms published to date.

For applications that require it, SIMR's bitext maps can be efficiently reduced
to segment alignments, using the Geometric Segment Alignment (GSA) algorithm
presented here. Admittedly, GSA is only useful when a good bitext map is available.
In such cases, there are three reasons to favor GSA over other options for alignment:
One, it is simply more accurate. Two, its expected running time is linear in the size
of the bitext. Therefore, three, it is not necessary to manually prealign large bitexts
before input to GSA.

There are numerous ways to improve on the methods presented here. If SIMR can
be reparameterized so that its parameters are pairwise independent, then it may be
possible to optimize these parameters analytically, or at least within a well-founded
probabilistic framework. Likewise, the parameters in GSA's backing-off heuristics and
the heuristics themselves were partially dictated by the scarcity of suitable training
data at the time that GSA was being developed. All of this is to say that the details
of the current implementations of SIMR and GSA are less important than the general
approach to bitext mapping advocated here.

128

Melamed Bitext Maps and Alignment

Acknowledgments
This research began while I was a visitor at
the Centre d'Innovation en Technologies de
l'Information in Laval, Canada. I am
indebted to Pierre Isabelle for informing me
that the bitext mapping problem was far
from being solved. Thanks are due to
everyone at CITI for letting me use their
software. SIMR was ported to
Spanish/English while I was visiting Sun
MicroSystems Laboratories. Thanks to Gary
Adams, Cookie Callahan, Bob Kuhns, and
Philip Resnik for their help with that
project. Thanks also to Philip Resnik for
writing the Spanish tokenizer, and for

,hand-aligning the Spanish/English training
bitexts. Porting SIMR to Korean/English
would not have been possible without
Young-Suk Lee of MIT's Lincoln
Laboratories, who provided the seed
translation lexicon, and aligned all the
training and test bitexts. This paper has
benefited tremendously from the insights
and comments of Stan Chen, Ken Church,
Mike Collins, Ido Dagan, Jason Eisner,
George Foster, Pierre Isabelle, Elliott
Macklovitch, Mitch Marcus, Adwait
Ratnaparkhi, Michel Simard, Eero
Simoncelli, Matthew Stone, Lyle Ungar,
Bonnie Webber, and four anonymous
reviewers. The majority of this work was
done at the Department of Computer and
Information Science of the University of
Pennsylvania, where it was supported by an
equipment grant from Sun MicroSystems
and partially funded by ARO grant
DAAL03-89-C0031 PRIME and by ARPA
grants N00014-90-J-1863 and
N66001-94C-6043.

References

Bellman, Richard. 1957. Dynamic
Programming. Princeton University Press,
Princeton, NJ.

Brown, Peter F., Stephen Della Pietra,
Vincent Della Pietra, and Robert L.
Mercer. 1993. The mathematics of
statistical machine translation: Parameter
estimation. Computational Linguistics, •9(2):
263-311.

Brown, Peter F., Jennifer C. Lai, and Robert
L. Mercer. 1991. Aligning sentences in
parallel corpora. In Proceedings of the 29th
Annual Meeting, pages 169-176, Berkeley,
CA. Association for Computational
Linguistics.

Catizone, Roberta, Graham Russell, and
Susan Warwick. 1993. Deriving

translation data from bilingual texts. In
Proceedings of the First International Lexical
Acquisition Workshop, Detroit, MI.

Chen, Stanley. 1996. Building Probabilistic
Models for Natural Language. Ph.D.
dissertation, Harvard University,
Cambridge, MA.

Church, Kenneth W. 1993. Char_align: A
program for aligning parallel texts at the
character level. In Proceedings of the 31st
Annual Meeting, pages 1-8, Columbus,
OH. Association for Computational
Linguistics.

Church, Kenneth W., Ido Dagan, William
Gale, Pascale Fung, J. Helfman, and B.
Satish. 1993. Aligning parallel texts: Do
methods developed for English-French
generalize to Asian languages? In
Proceedings of PacfoCol'93. Taipei, Taiwan.

Cousin, Pierre-Henri, Lorna Sinclair,
Jean-Francois Allain, and Catherine E.
Love. 1991. The Collins Paperback French
Dictionary. Harper Collins Publishers,
Glasgow, Scotland.

Dagan, Ido, Kenneth W. Church, and
William Gale. 1993. Robust word
alignment for machine aided translation.
In Proceedings of the Workshop on Very Large
Corpora: Academic and Industrial
Perspectives, pages 1-8, Columbus, OH.

Debili, Fathi and Ely@s Sammouda. 1992.
Appariement des phrases de textes
bilingues. In Proceedings of the 14th
International Conference on Computational
Linguistics, pages 517-538, Nantes, France.

Dempster, A. P., N. M. Laird, and D. B.
Rubin. 1977. Maximum likelihood from
incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, 34(B):
1-38.

Fung, Pascale. 1995. A pattern matching
method for finding noun and proper
noun translations from noisy parallel
corpora. In Proceedings of the 33rd Annual
Meeting, pages 236-243, Boston, MA.
Association for Computational
Linguistics.

Fung, Pascale and Kenneth W. Church.
1994. K-vec: A new approach for aligning
parallel texts. In Proceedings of the 15th
International Conference on Computational
Linguistics, pages 1,096-1,102, Kyoto,
Japan.

Fung, Pascale and Kathleen McKeown.
1994. Aligning noisy parallel corpora
across language groups: Word pair
feature matching by dynamic time
warping. In Proceedings of the Conference of
the Association for Machine Translation in the

129

Computational Linguistics Volume 25, Number 1

Americas, pages 81-88, Columbia, MD.
Gale, William and Kenneth W. Church.

1991a. A program for aligning sentences
in bilingual corpora. In Proceedings of the
29th Annual Meeting, pages 177-184,
Berkeley, CA. Association for
Computational Linguistics.

Gale, William and Kenneth W. Church.
1991b. Identifying word correspondences
in parallel texts. In Proceedings of the
DARPA SNL Workshop, pages 152-157.

Harris, Brian. 1988. Bi-text, a new concept in
translation theory. Language Monthly, 54:
8-10.

J. W. Hunt and T. G. Szymanski. 1977. A
fast algorithm for computing longest
common subsequences. Communications of
the ACM, 20(5): 350-353.

Isabelle, Pierre. 1992. Bi-textual aids for
translators. In Proceedings of the 8th Annual
Conference of the UW Centre for the New
OED and Text Research, pages 1-15,
Waterloo, Canada.

Kay, Martin and Martin R6scheisen. 1993.
Text-translation alignment. Computational
Linguistics, 19(1): 121-142.

Knight, Kevin and Jonathan Graehi. 1997.
Machine transliteration. In Proceedings of
the 35th Annual Meeting, pages 128-135,
Madrid, Spain. Association for
Computational Linguistics.

Macklovitch, Elliott. 1996. Peut-on v4rifier
automatiquement la coh4rence
terminologique? META 41(3). .

McEnery, Tony and Michael Oakes. 1995.
Cognate extraction in the CRATER
project: Methods and assessment. In
Proceedings of From Texts to Tags: Issues in
Multilingual Language Analysis,
pages 77-86, Dublin, Ireland.

Melamed, I. Dan. 1996a. Automatic
detection of omissions in translations. In
Proceedings of the 16th International
Conference on Computational Linguistics,
pages 764-769, Copenhagen, Denmark.

Melamed, I. Dan. 1996b. Automatic
construction of clean broad-coverage
translation lexicons. In Proceedings of the
2nd Conference of the Association for Machine
Translation in the Americas, pages 125-134,
Montreal, Canada.

Melamed, I. Dan. 1996c. Porting SIMR to
new language pairs. Institute for Research
in Cognitive Science Technical Report
96-26, University of Pennsylvania,
Philadelphia, PA.

Melamed, I. Dan. 1997. A portable

algorithm for mapping bitext
correspondence. In Proceedings of the 35th
Annual Meeting, pages 305-312, Madrid,
Spain. Association for Computational
Linguistics.

Melamed, I. Dan. 1998a. Models of
co-occurrence. Institute for Research in
Cognitive Science Technical Report 98-05,
University of Pennsylvania, Philadelphia,
PA.

Melamed, I. Dan. 1998b. Empirical Methods
for Exploiting Parallel Texts. Ph.D.
dissertation, University of Pennsylvania,
Philadelphia, PA.

Nerbonne, John, Lauri Karttunen, Elena
Paskaleva, Gabor Proszeky, and Tiit
Roosmaa. 1997. Reading more into
foreign languages. In Proceedings of the 5th
ACL Conference on Applied Natural Language
Processing, pages 135-138, Washington,
DC.

Papageorgiou, Harris, Lambros Cranias, and
Stelios Piperidis. 1994. Automatic
alignment in parallel corpora. In
Proceedings of the 32nd Annual Meeting
(Student Session), pages 334-336, Las
Cruces, NM. Association for
Computational Linguistics.

Resnik, Philip and I. Dan Melamed. 1997.
Semi-automatic acquisition of
domain-specific translation lexicons. In
Proceedings of the 5th ACL Conference on
Applied Natural Language Processing,
pages 340-347, Washington, DC.

Simard, Michel, George F. Foster, and Pierre
Isabelle. 1992. Using cognates to align
sentences in bilingual corpora. In
Proceedings of the Fourth International
Conference on Theoretical and Methodological
Issues in Machine Translation, pages 67-81.
Montreal, Canada.

Simard, Michel and Pierre Plamondon. 1996.
Bilingual sentence alignment: Balancing
robustness and accuracy. In Proceedings of
the 2nd Conference of the Association for
Machine Translation in the Americas,
pages 135-144, Montreal, Canada.

Ren4 V. V. Vidal, editor. 1993. Applied
Simulated Annealing. Springer-Verlag,
Heidelberg, Germany.

Wu, Dekai. 1994. Aligning a parallel
English-Chinese corpus statistically with
lexical criteria. In Proceedings of the 32nd
Annual Meeting, pages 80-87, Las Cruces,
NM. Association for Computational
Linguistics.

130

