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Texts that are available in two languages (bitexts) are becoming more and more plentiful, both in 
private data warehouses and on publicly accessible sites on the World Wide Web. As with other 
kinds of data, the value ofbitexts largely depends on the efficacy of the available data mining tools. 
The first step in extracting useful information from bitexts is to find corresponding words and~or 
text segment boundaries in their two halves (bitext maps). 

This article advances the state of the art ofbitext mapping by formulating the problem in terms 
of pattern recognition. From this point of view, the success of a bitext mapping algorithm hinges 
on how well it performs three tasks: signal generation, noise filtering, and search. The Smooth 
Injective Map Recognizer (SIMR) algorithm presented here integrates innovative approaches to 
each of these tasks. Objective evaluation has shown that SIMR's accuracy is consistently high for 
language pairs as diverse as French~English and Korean~English. If necessary, S IMR's bitext maps 
can be efficiently converted into segment alignments using the Geometric Segment Alignment 
(GSA) algorithm, which is also presented here. 

SIMR has produced bitext maps for over 200 megabytes of French-English bitexts. GSA has 
converted these maps into alignments. Both the maps and the alignments are available from the 
Linguistic Data Consortium} 

1. Introduction 

Existing translations contain more solutions to more translation prob- 
lems than any other existing resource (Isabelle 1992). 

Although the above statement was made about translation problems faced by human 
translators, recent research (Brown et al. 1993; Melamed 1996b) suggests that it also 
applies to problems in machine translation. Texts that are available in two languages 
(bitexts) (Harris 1988) also play a pivotal role in various less automated applications. 
For example, bilingual lexicographers can use bitexts to discover new cross-language 
lexicalization patterns (Catizone, Russell, and Warwick 1993; Gale and Church 1991b); 
students of foreign languages can use one half of a bitext to practice their reading 
skills, referring to the other half for translation when they get stuck (Nerbonne et al. 
1997). Bitexts are of little use, however, without an automatic method for matching 
corresponding text units in their two halves. 

The bitext mapping problem can be formulated in terms of pattern recognition. 
From this point of view, the success of a bitext mapping algorithm hinges on three 
tasks: signal generation, noise filtering, and search. This article presents the Smooth 
Injective Map Recognizer (SIMR), a generic pattern recognition algorithm that is partic- 
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Figure 1 
A bitext space. 

ularly well suited to mapping bitext correspondence. SIMR demonstrates that, given 
effective signal generators and noise filters, it is possible to map bitext correspon- 
dence with high accuracy in linear space and time. If necessary, SIMR can be used 
with the Geometric Segment Alignment (GSA) algorithm, which uses segment bound- 
ary information to reduce general bitext maps to segment alignments. Evaluations on 
preexisting gold standards have shown that SIMR's bitext maps and GSA's alignments 
are more accurate than those of comparable algorithms in the literature. 

The article begins with a geometric interpretation of the bitext mapping problem 
and a discussion of previous work. SIMR is detailed in Section 4 and evaluated in 
Section 6. Section 7 discusses the formal relationship between bitext maps and seg- 
ment alignments. The GSA algorithm for converting from the former to the latter is 
presented in Section 7 and evaluated in Section 8. 

2. Bitext Geometry 

Each bitext defines a rectangular bitext space, as illustrated in Figure 1. The lower left 
corner of the rectangle is the origin of the bitext space and represents the two texts' 
beginnings. The upper right corner is the terminus and represents the texts' ends. The 
line between the origin and the terminus is the main diagonal. The slope of the main 
diagonal is the bitext slope. 

Each bitext space is spanned by a pair of axes. The lengths of the axes are the 
lengths of the two component texts. The axes of a bitext space are measured in char- 
acters, because text lengths measured in characters correlate better than text lengths 
measured in tokens (Gale and Church 1991a). This correlation is important for geo- 
metric bitext mapping heuristics, such as those described in Section 4.4. Although the 
axes are measured in characters, I will argue that word tokens are the optimum level 
of analysis for bitext mapping. By convention, each token is assigned the position of 
its median character. 

Each bitext space contains a number of true points of correspondence (TPCs), 
other than the origin and the terminus. TPCs exist both at the coordinates of matching 
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text units and at the coordinates of matching text unit boundaries. If a token at position 
p on the x-axis and a token at position q on the y-axis are translations of each other, 
then the coordinate (p, q) in the bitext space is a TPC. If a sentence on the x-axis ends 
at character r and the corresponding sentence on the y-axis ends at character s, then 
the coordinate (r + .5, s + .5) is a TPC. The .5 is added because it is the inter-sentence 
boundaries that correspond, rather than the last characters of the sentences. Similarly, 
TPCs arise from corresponding boundaries between paragraphs, chapters, list items, 
etc. Groups of TPCs with a roughly linear arrangement in the bitext space are called 
chains. 

Bitext maps are injective (1-to-1) partial functions in bitext spaces. A complete set 
of TPCs for a particular bitext is the true bitext map (TBM). The purpose of a bitext 
mapping algorithm is to produce bitext maps that are the best possible approximations 
of each bitext's TBM. 

3. Previous Work 

Early bitext mapping algorithms focused on finding corresponding sentences (De- 
bifi and San~nouda 1992; Kay and R6scheisen 1993). Although sentence maps are 
too coarse for some bitext applications (Melamed 1996a; Macklovitch 1996), sentences 
were a relatively easy starting point, because their order rarely changes during trans- 
lation. Therefore, most sentence mapping algorithms ignore the possibility of crossing 
correspondences and aim to produce only an alignment. Given parallel texts U and 
V, an alignment is a segmentation of U and V into n segments each, so that for each 
i, 1 < i < n, ui and vi are mutual translations. An aligned segment pair ai is an or- 
dered pair (ui, vi). Thus, an alignment A can also be defined as a sequence of aligned 
segments: A =- (al . . . .  ,an). In 1991, two teams of researchers independently discov- 
ered that sentences from bitexts involving clean translations can be aligned with high 
accuracy just by matching sentence sequences with similar lengths (Brown, Lai, and 
Mercer 1991; Gale and Church 1991a). Both teams approached the alignment problem 
via maximum-likelihood estimation, but using different models. 

Brown, Lai, and Mercer (1991) formulated the problem as a hidden Markov model 
(HMM), based on a two-stage generative process. Stage one generated some number 
of aligned segment pairs; stage two decided how many segments from each half of 
the bitext to put in each aligned segment pair. Brown, Lai, and Mercer (1991) took 
advantage of various lexical "anchors" in the bitext that they were experimenting 
with. These anchors were also generated by the HMM, according to their respective 
probability functions. All the hidden variables were estimated using the EM algorithm 
(Dempster, Laird, and Rubin 1977). 

Gale and Church (1991a) began with a less structured model and proceeded to 
estimate its parameters through a series of approximations. Given the set A of all 
possible alignments, the maximum-likelihood alignment is 

Am~x = arg ~cax Pr(A I U, V). (1) 

Gale and Church first assumed that the probability of any aligned segment pair is 
independent of any other segment pair: 

IAI 
Amax = argmax ] 1  Pr(ailui, vi). (2) 

V A E , A  a . a .  
i=1 

Next, they assumed that the only feature of b/i and v i that influences the probability of 
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Table 1 
Alignment algorithms that don't look at the words can fumble in bitext regions like this vote 
record. Source: Chen (1996) 

English French 

Mr. McInnis? M. McInnis? 
Yes. Oui. 
Mr. Saunders? M. Saunders? 
No. Non. 
Mr. Cossitt? M. Cossitt? 
Yes. Oui. 

their alignment is a function d(ui, Vi) of the difference in their lengths, in characters: 

IAI 
Amax ~- arg max ] 1  Pr(aild(ui, vi)). (3) 

AC.A ~ a .  
i = 1  

By Bayes' rule, 

Ial Pr(d(ui, vi)lai) Pr(ai) 
Amax -- arg max ] 1  (4) 

- AE~4 ~'L Pr(d(ui, vi)) 
i = 1  

Ignoring the normalizing constant Pr(d(ui, vi)) and taking the logarithm, Gale and 
Church arrived at 

IAI 
Area x = arg max ~ log Pr(d(ui, Vi)lai) P r ( a i ) .  (5) 

v A G A  
i = 1  

Gale and Church empirically estimated the distributions Pr(d(ui, vi)lai) and Pr(ai) from 
a hand-aligned training bitext and then used dynamic programming to solve Equa- 
tion 5. 

The length-based alignment algorithms work remarkably well on language pairs 
like French/English and German/English, considering how little information they use. 
However, length correlations are not as high when either of the languages involved 
does not use a phonetically based alphabet (e.g., Chinese). Even in language pairs 
where the length correlation is high, length-based algorithms can fumble in bitext 
regions that contain many segments of similar length, like the vote record in Table 1. 
The only way to ensure a correct alignment in such cases is to look at the words. For 
this reason, Chen (1996) added a statistical translation model to the Brown, Lai, and 
Mercer alignment algorithm, and Wu (1994) added a translation lexicon to the Gale 
and Church alignment algorithm. 

A translation lexicon T can be represented as a sequence of t entries, where each 
entry is a pair of words: T ~ /(xl,yl) . . . . .  (xt, y t ) l .  Roughly speaking, Wu (1994) ex- 
tended Gale and Church's (1991a) method with a matching function m(u, v,j), which 
was equal to one whenever xj E u and yj E v for lexicon entry (xj, yj), and zero 
otherwise• The information in the matching function was then used along with the 
information in d(ui,  Vi) to condition the probability of alignments in Equation 3: 

IAI 
Amax = arg max H Pr(aild( ui" vi ) ; m( ui, vi, 1) . . . . .  m( ui, vi, t ) ). (6) 

A •.A 
i = 1  
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From this point, Wu proceeded along the lines of Equations 4 and 5 and the dynamic 
programming solution. 

Another interesting approach is possible when part-of-speech taggers are available 
for both languages. The insight that parts of speech are usually preserved in translation 
enabled Papageorgiou, Cranias, and Piperidis (1994) to design an alignment algorithm 
that maximizes the number of matching parts of speech in aligned segments. It is 
difficult to compare this algorithm's performance to that of other algorithms in the 
literature, because results were only reported for a relatively easy bitext. On this bitext, 
the algorithm's performance was nearly perfect. A translation model between parts of 
speech would not help on bitext regions like the one in Table 1. 

The alignment algorithms described above work nearly perfectly given clean bi- 
texts that have easily detectable sentence boundaries. However bitext mapping at the 
sentence level is not an option for many bitexts (Church 1993). Sentences are often 
difficult to detect, especially when punctuation is missing due to OCR errors. More 
importantly, bitexts often contain lists, tables, titles, footnotes, citations and/or  mark- 
up codes that foil sentence alignment methods. Church's solution was to map bitext 
correspondence at the level of the smallest text units--characters. Characters match 
across languages to the extent that they participate in orthographic cognates--words 
with similar meanings and spellings in different languages. Since there are far more 
characters than sentences in any bitext, the quadratic computational complexity of this 
approach presented an efficiency problem. Church showed how to use a high-band 
filter to find a rough bitext map quickly. 

Church's rough bitext maps were intended for input into Dagan, Church, and 
Gale's (1993) slower algorithm for refinement. Dagan, Church, and Gale used the rough 
bitext map to define a distance-based model of co-occurrence. Then they adapted 
Brown et al.'s (1993) statistical translation Model 2 to work with this model of co- 
occurrence. 2 The information in the translation model was more reliable than character- 
level cognate information, so it produced a higher signal-to-noise ratio in the bitext 
space. Therefore, Dagan, Church, and Gale were able to filter out many of the imper- 
fections of the initial bitext map. 

A limitation of Church's method, and therefore also of Dagan, Church, and Gale's 
method, is that orthographic cognates exist only among languages with similar al- 
phabets (Church et al. 1993). Fung investigated ways to make these methods useful 
when cognates cannot be found. First, working with Church, she introduced the K- 
Vec algorithm (Fung and Church 1994), which used a rough model of co-occurrence to 
bootstrap a small translation lexicon. The translation lexicon indicated points of cor- 
respondence in the bitext map, much the same way as matching character n-grams. 
These points of correspondence could then be further refined using the methods pre- 
viously developed by Church (1993) and Dagan, Church, and Gale (1993). Later, Fung 
and McKeown (1994) improved on K-Vec by employing relative position offsets, in- 
stead of a fixed model of co-occurrence. This strategy made the algorithm more robust 
for noisier bitexts. 

4. The Smooth Injective Map Recognizer (SIMR) 

4.1 Overview 
SIMR borrows several insights from previous work. Like the algorithms of 
Gale and Church (1991a) and Brown, Lai, and Mercer (1991), SIMR exploits the cor- 

2 See Melamed (1998a) for a general discussion of models of co-occurrence. 
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relation between the lengths of mutual translations. Like char_align (Church 1993), 
SIMR infers bitext maps from likely points of correspondence between the two texts, 
points that are plotted in a two-dimensional space of possibilities. Unlike previous 
methods, SIMR greedily searches for only a small chain of correspondence points at 
a time. 

The search begins in a small search rectangle in the bitext space, whose diagonal is 
parallel to the main diagonal. The search for each chain alternates between a generation 
phase and a recognition phase. In the generation phase, SIMR generates candidate 
points of correspondence within the search rectangle that satisfy the supplied matching 
predicate, as explained in Section 4.2. In the recognition phase, SIMR invokes the chain 
recognition heuristic to select the most likely chain of true points of correspondence 
(TPCs) among the generated points. The most likely chain of TPCs is the set of points 
whose geometric arrangement most resembles the typical arrangement of TPCs. The 
parameters of the chain recognition heuristic are optimized on a small training bitext. 
If no suitable chains are found, the search rectangle is proportionally expanded by 
the minimum possible amount and the generation-recognition cycle is repeated. The 
rectangle keeps expanding until at least one acceptable chain is found. If more than 
one acceptable chain is found in the same cycle, SIMR accepts the chain whose points 
are least dispersed around its least-squares line. Each time SIMR accepts a chain, it 
moves the search rectangle to another region of the bitext space to search for the next 
chain. 

SIMR employs a simple heuristic to select regions of the bitext space to search. To 
a first approximation, true bitext maps are monotonically increasing functions. This 
means that if SIMR accepts one chain, it should look for others either above and to 
the right or below and to the left of the one it has just found. All SIMR needs is a 
place to start the trace, and a good place to start is at the beginning. Since the origin 
of the bitext space is always a TPC, the first search rectangle is anchored at the origin. 
Subsequent search rectangles are anchored at the top right corner of the previously 
found chain, as shown in Figure 2. 

The expanding rectangle search strategy makes SIMR robust in the face of TBM 
discontinuities. Figure 2 shows a segment of the TBM that contains a vertical gap (an 
omission in the text on the x-axis). As the search rectangle grows, it will eventually 
intersect with the TBM, even if the discontinuity is quite large (Melamed 1996a). The 
noise filter described in Section 4.3 reduces the chances that SIMR will be led astray 
by false points of correspondence. 

4.2 Point Generation 
Before SIMR can decide where to generate candidate points of correspondence, it 
must be told which pairs of words have coordinates within the boundaries of the 
current search rectangle. The mapping from tokens to axis positions is performed by 
a language-specific axis generator (Melamed 1998b). SIMR calls one of its matching 
predicates on each pair of tokens whose coordinate falls within the search rectangle. 
A matching predicate is a heuristic for deciding whether two given tokens might be 
mutual translations. Two kinds of information that a matching predicate can rely on 
most often are cognates and translation lexicons. 

Two words are orthographic cognates if they have the same meaning and similar 
spellings. Similarity of spelling can be measured in more or less complicated ways. 
The first published attempt to exploit cognates for bitext mapping purposes (Simard, 
Foster, and Isabelle 1992) deemed two alphabetic tokens cognates if their first four 
characters were identical. This criterion proved surprisingly effective, given its sim- 
plicity. However, like all heuristics, it produced some false positives and some false 
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Figure 2 
SIMR's "expanding rectangle" search strategy. The search rectangle is anchored at the top right 
corner of the previously accepted chain. Its diagonal remains parallel to the main diagonal. 

negatives. An example of a false negative is the word pair government and gouverne- 
ment. The false positives were often words with a big difference in length, like conseil 
and conservative. These examples suggest that a more accurate cognate criterion can 
be driven by approximate string matching. For example, McEnery and Oakes (1995) 
threshold the Dice coefficient of matching character bigrams in each pair of candidate 
cognates. The matching predicates in SIMR's current implementation threshold the 
Longest Common Subsequence Ratio (LCSR). 

The LCSR of two tokens is the ratio of the length of their longest (not necessar- 
ily contiguous) common subsequence (LCS) and the length of the longer token. In 
symbols, 

LCSR(A, B) = length[LCS(A, B)] 
max[length(A), length(B)] " (7) 

For example, gouvernement, which is 12 characters long, has 10 characters that appear 
in the same order in government. So, the LCSR for these two words is 10/12. On the 
other hand, the LCSR for conseil and conservative is only 6/12. A simple dynamic 
programming algorithm (Bellman 1957) can compute the LCS in O(n2). A rather more 
complicated algorithm can compute it in O(n log logn) time on average (Hunt and 
Szymanski 1977). 

When dealing with language pairs that have different alphabets, the matching 
predicate can employ phonetic cognates. When language L1 borrows a word from 
language L2, the word is usually written in L1 similarly to the way it sounds in L2. 
Thus, French and Russian /portm0n0/ are cognates, as are English /sIstom/ and 
Japanese/~isutemu/. For many languages, it is not difficult to construct an approxi- 
mate mapping from the orthography to its underlying phonological form. Given such 
a mapping for L1 and L2, it is possible to identify cognates despite incomparable 
orthographies. 
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Knight and Graehl (1997) have shown that it is possible to find phonetic  cognates 
even between languages whose writ ing systems are as different as those of English 
and Japanese. They have built  a weighted finite-state au tomaton  (WFSA), based on 
empirically est imated probabili ty distributions, for back-transliterating English loan 
words  writ ten in katakana into their original English form. The WFSA efficiently rep- 
resents a large number  of transliteration probabilities be tween words  wri t ten in the 
katakana and Roman alphabets. Standard finite-state techniques can efficiently find the 
most  likely path  through the WFSA from a Japanese word  wri t ten in katakana to an 
English word.  The weight  of the most  likely path  is an estimate of the probabili ty that 
the former is a transliteration of the latter. Thresholding this probabili ty would  lead 
to a phonetic  cognate matching predicate for Engl ish/Japanese bitexts. The threshold 
would  need  to be opt imized together with SIMR's other  parameters ,  the same way  
the LCSR threshold is current ly opt imized (see Section 5). 

Cognates are more  common  in bitexts f rom more similar language pairs, and from 
text genres where  more word  borrowing occurs, such as technical texts. In the non- 
technical Canadian Hansards  (parl iamentary debate transcripts publ ished in English 
and in French), an LCSR cutoff of .58 finds cognates for roughly  one quarter  of all 
text tokens. Even distantly related languages like English and Czech will share a large 
number  of or thographic  cognates in the form of proper  nouns,  numerals ,  and punctu-  
ation. When  one or both  of the languages involved is wri t ten in pictographs,  cognates 
can still be found among punctua t ion  and numerals.  However ,  these kinds of cognates 
are usually too sparse to build an accurate bitext map  from. 

When the matching predicate cannot  generate enough  candidate  correspondence 
points based on cognates, its signal can be s t rengthened by  a seed t ransla t ion l ex icon- -  
a simple list of word  pairs that are bel ieved to be mutual  translations. Seed translation 
lexicons can be extracted from machine-readable bilingual dictionaries (MRBDs) in 
the rare cases where  MRBDs are available. In other cases, they can be constructed 
automatically or semiautomatical ly using any of several publ ished methods  (Fung 
and Church 1994; Fung 1995; Melamed 1996b; Resnik & Melamed 1997). 3 A matching 
predicate based on a seed translation lexicon deems two candidate  tokens to be mutua l  
translations if the token pair appears  in the lexicon. Since the matching predicate need  
not  be perfect ly accurate, the seed translation lexicons need  not  be perfectly accurate 
either. 

All the matching predicates described above can be f ine-tuned with stop lists for 
one or both  languages. For example,  closed-class words  are unlikely to have cog- 
nates. Indeed,  French/Engl ish  words  like a, an, on, and par often produce  spurious 
points of correspondence.  The same problem is caused by  faux amis ("false friends") 
(Macklovitch 1996). These are words  with similar spellings bu t  different meanings  in 
different languages. For example,  the French word  librarie means 'bookstore, '  not  
'library,' and actuel means 'current, '  not  'actual. '  A matching predicate can use a 
list of closed-class words  a n d / o r  a list of pairs of faux amis to filter out  spurious 
matches. 

3 Most published methods for automatically constructing translation lexicons require a preexisting bitext 
map, which seems to render them useless for the purposes of bitext mapping algorithms. Fortunately, 
only one seed translation lexicon is required for each language pair, or at worst for each sublanguage. 
If we expect to map many bitexts in the same language pair, then it becomes feasible to spend a few 
hours creating one bitext map by hand. Melamed (1996c) explains how to do so quickly and efficiently. 
Better yet, Fung (1995) shows how it may be possible to extract a small translation lexicon and a rough 
bitext map simultaneously. 
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Figure 3 
Frequent word types cause false points of correspondence that line up in rows and columns. 

4.3 Noise Filter 
Inspection of several bitext spaces has revealed a common noise pattern, illustrated in 
Figure 3. It consists of correspondence points that line up in rows or columns associated 
with frequent word types. Word types like the English article a can produce one or 
more correspondence points for almost every sentence in the opposite text. Only one 
point of correspondence in each row and column can be correct; the rest are noise. It 
is difficult to measure exactly how much noise is generated by frequent tokens, and 
the proportion is different for every bitext. Informal inspection of some bitext spaces 
indicated that frequent tokens are often responsible for the lion's share of the noise. 
Reducing this source of noise makes it much easier for SIMR to stay on track. 

Other bitext mapping algorithms mitigate this source of noise either by assigning 
lower weights to correspondence points associated with frequent word types (Church 
1993) or by deleting frequent word types from the bitext altogether (Dagan, Church, 
and Gale 1993). However, a word type that is relatively frequent overall can be rare 
in some parts of the text. In those parts, the word type can provide valuable clues 
to correspondence. On the other hand, many tokens of a relatively rare type can be 
concentrated in a short segment of the text, resulting in many false correspondence 
points. The varying concentration of identical tokens suggests that more localized noise 
filters would be more effective. SIMR's localized search strategy provides a vehicle for 
a localized noise filter. 

The filter is based on the maximum point ambiguity level parameter. For each 
point p = (x, y), let X be the number of points in column x within the search rectangle, 
and let Y be the number of points in row y within the search rectangle. The ambiguity 
level of p is defined as X + Y - 2. In particular, if p is the only point in its row and 
in its column, then its ambiguity level is zero. The chain recognition heuristic ignores 
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Figure 4 
SIMR's noise filter makes an important contribution to the signal-to-noise ratio in the bitext 
space. Even if one chain of false points of correspondence slips by the chain recognition 
heuristic, the expanding rectangle is likely to find its way back to the TBM trace before the 
chain recognition heuristic accepts another chain. 

points whose ambiguity level is too high. What makes this a localized filter is that 
only points within the search rectangle count toward each other's ambiguity level. 
The ambiguity level of a given point can change when the search rectangle expands 
or moves. 

The noise filter ensures that false points of correspondence are relatively sparse, 
as illustrated in Figure 4. Even if one chain of false points of correspondence slips by 
the chain recognition heuristic, the expanding rectangle is likely to find its way back 
to the TBM trace before the chain recognition heuristic accepts another chain. If the 
matching predicate generates a reasonably strong signal then the signal-to-noise ratio 
will be high and SIMR is not likely to get lost, even though it is a greedy algorithm 
with no ability to look ahead. 

4.4 Point Selection 
After noise •tering, most TPC chains conform to the pattern illustrated in Figure 5. 
The pattern can be characterized by three properties: 

• Injectivity: No two points in a chain of TPCs can have the same x- or 
y-coordinates. 

• Linearity: TPCs tend to line up straight. Recall that sets of points with a 
roughly linear arrangement are called chains. 

• Low Variance of Slope: The slope of a TPC chain is rarely much 
different from the bitext slope. 

SIMR exploits these properties to decide which chains might be TPC chains. First, 
chains that lack the injectivity property are rejected outright. The remaining chains are 
filtered using two threshold parameters: maximum point dispersal and maximum 
angle deviation. The linearity of each chain is measured as the root mean squared 
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Figure 5 
Typical pattern of candidate points of correspondence in a bitext space, after noise filtering. 
The true points of correspondence trace the true bitext map parallel to the main diagonal. 

distance of the chain's points from the chain's least-squares line. If this distance exceeds 
the maximum point dispersal threshold, the chain is rejected. The angle of each chain's 
least-squares line is compared to the arctangent of the bitext slope. If the difference 
exceeds the maximum angle deviation threshold, the chain is rejected. 

4.5 Reduction of the Search Space 
In a search rectangle containing n points, there are 2 n possible chains--too many 
to search by brute force. The properties of TPCs listed above provide two ways to 
constrain the search. 

The Linearity property leads to a constraint on the chain size. Chains of only a 
few points are unreliable, because they often line up straight by coincidence. Chains 
that are too big will span too long a segment of the TBM to be well approximated by 
a line. SIMR uses a fixed chain size k, 6 < k < 11. The exact value of k is optimized 
together with the other parameters, as described in Section 5. Fixing the chain size at 
k reduces the number of candidate chains to (~) - n: (n-k)!k!" 

For typical values of n and k, (~) can still reach into the millions. The Low Variance 
of Slope property suggests another constraint: SIMR should consider only chains that 
are roughly parallel to the main diagonal. Two lines are parallel if the perpendicular 
displacement between them is constant. So, chains that are roughly parallel to the main 
diagonal will consist of points that all have roughly the same displacement from the 
main diagonal. 4 Points with similar displacement can be grouped together by sorting, 
as illustrated in Figure 6. Then, chains that are most parallel to the main diagonal will 
be contiguous subsequences of the sorted point sequence. In a region of the bitext 

4 Displacement can be negative. 
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subsequence 1 m a i n e  

~subsequence 8 

(points 1 thru 6) 

°1 o2 

 L47 J (points 5 thru 10) (points 8 thru 13) 

Figure 6 
The chain recognition heuristic exploits the Low Variance of Slope property of TPC chains. The 
candidate points of correspondence are numbered according to their displacement from the 
main diagonal. The chain most parallel to the main diagonal is always one of the contiguous 
subsequences of this ordering. For a fixed chain size of 6, there are 13 - 6 + 1 = 8 contiguous 
subsequences in this region of 13 points. Of these 8, the fifth subsequence is the best chain. 

space containing n points, there will be only n - k + 1 such subsequences of length 
k. The most  computat ional ly  expensive step in the chain recognit ion process is the 
insertion of candidate points into the sorted point  sequence. 

4.6 Enhancements 
The following subsections describe two of the more  interesting enhancements  in the 
current  SIMR implementat ion.  

4.6.1 Overlapping Chains. SIMR's fixed chain size imposes a rather  arbitrary fragmen- 
tation on the TBM trace. Each chain starts at the top-right  corner of the previously  
found chain, but  these chain boundar ies  are independen t  of discontinuities or angle 
variations in the TBM trace. Therefore, SIMR is likely to miss TPCs wherever  the TBM 
is not  linear. One way  to make  SIMR more  robust  is to start the search rectangle just 
above the lowest point  of the previously found chain, instead of just above the highest  
point. If the chain size is fixed at k, then each linear stretch of s TPCs will result  in 
s - k + 1 over lapping chains. 

Unfortunately,  this solution introduces another  problem: Two over lapping chains 
can be inconsistent. The injective p roper ty  of TBMs implies that wheneve r  two (inter- 
polated) chains overlap in the x or y dimensions,  but  are not  identical in the region 
of overlap, then one of the chains must  be wrong. To resolve such conflicts, SIMR 
employs  a postprocessing algori thm to eliminate conflicting chains one at a time, until  
all remaining chains are pairwise consistent. The conflict resolution algori thm is based 
on the heuristic that chains that conflict with a larger n u m b er  of other chains are more  
likely to be wrong. The algori thm sorts all chains wi th  respect to h o w  m an y  other 
chains they conflict with, and eliminates them in this sort order, one at a time, until  no 
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Chain X is perfectly valid, even though it has a highly deviant slope. Such chains can be 
recovered by re-searching regions between accepted chains. The slope of the local main 
diagonal can be quite different from the slope of the global main diagonal. 

conflicts remain. Whenever two or more chains are fled in the sort order, the conflict 
resolution algorithm eliminates all but the chain with the least point dispersal. 

4.6.2 Additional Search Passes. To ensure that SIMR rejects spurious chains, the max- 
imum angle deviation threshold must be set low. However, like any heuristic filter, 
this one will reject some perfectly valid candidates• If a more precise bitext map is 
desired, some of these valid chains can be recovered during an extra sweep through 
the bitext space. Since bitext maps are mostly injective, valid chains that are rejected 
by the angle deviation filter usually occur between two accepted chains, as shown in 
Figure 7. If Chains C and D are accepted as valid, then the slope of the TBM between 
the end of Chain C and the start of Chain D must be much closer to the slope of 
Chain X than to the slope of the main diagonal• Chain X should be accepted• Dur- 
ing a second pass through the bitext space, SIMR searches for sandwiched chains in 
any space between two accepted chains that is large enough to accommodate another 
chain. This subspace of the bitext space will have its own main diagonal• The slope 
of this local main diagonal can be quite different from the slope of the global main 
diagonal. 

An additional search through the bitext space also enables SIMR to recover chains 
that were missed because of an inversion in the translation. Nonmonotonic TBM seg- 
ments result in a characteristic map pattern, as a consequence of the injectivity of bitext 
maps. SIMR has no problem with small nonmonotonic segments inside chains. How- 
ever, the expanding rectangle search strategy can miss larger nonmonotonic segments 
that do not fit inside one chain. In Figure 8, the vertical range of segment j corre- 
sponds to a vertical gap in SIMR's first-pass map. The horizontal range of segment j 
corresponds to a horizontal gap in SIMR's first-pass map.'Similarly, any nonmonotonic 
segment of the TBM will occupy the intersection of a vertical gap and a horizontal gap 
in the monotonic first-pass map. Furthermore, switched segments are usually adjacent 
and relatively short• Therefore, to recover nonmonotonic segments of the TBM, SIMR 
needs only to search gap intersections that are close to the first-pass map. There are 
usually very few such intersections that are large enough to accommodate new chains, 
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Figure 8 
Segments i and j switched places during translation. Any nonmonotonic segment of the TBM 
will occupy the intersection of a vertical gap and a horizontal gap in the monotonic first-pass 
map. These larger nonmonotonic segments can be recovered during a second sweep through 
the bitext space. 

so the second-pass search requires only a small fraction of the computational effort of 
the first pass. 

5. Parameter Optimization 

SIMR's parameters--the fixed chain size; the LCSR threshold used in the matching 
predicate; and the thresholds for maximum point dispersal, maximum angle devi- 
ation, and maximum point ambiguity--interact in complicated ways. Ideally, SIMR 
should be reparameterized so that its parameters are pairwise independent. Then it 
may be possible to optimize the parameters analytically, or at least in a probabilistic 
framework. For now, the easiest way to optimize these parameters is via simulated 
annealing (Vidal 1993), a simple general framework for optimizing highly interdepen- 
dent parameter sets. 

Simulated annealing requires an objective function to optimize. The objective func- 
tion for bitext mapping should measure the difference between the TBM and the in- 
terpolated bitext maps produced with the current parameter set. In geometric terms, 
the difference is a distance. The TBM consists of a set of TPCs. The distance between 
a bitext map and each TPC can be defined in a number of ways. The simplest metrics 
are the horizontal distance or the vertical distance, but these metrics measure the error 
with respect to only one language or the other. A more robust average is the distance 
perpendicular to the main diagonal. In order to penalize large errors more heavily, 
root mean squared (RMS) distance, rather than mean distance, should be minimized. 

There is a slight complication in the computation of distances between two par- 
tial functions, in that linear interpolation is not well-defined for nonmonotonic sets of 
points. It would be incorrect to simply connect the dots left to right, because the result- 
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Figure 9 
Two text segments at the end of Sentence A were switched during translation, resulting in a 
nonmonotonic segment• To interpolate injective bitext maps, nonmonotonic segments must be 
encapsulated in Minimum Enclosing Rectangles (MERs). A unique bitext map can then be 
interpolated by using the lower left and upper right comers of the MER (map M2), instead of 
using the nonmonotonic correspondence points (function M1). 

Table 2 
SIMR accuracy on training bitexts for three language pairs. 

Language Pair Number of Training TPCs Training Genre 
RMS Error 

in Characters 

French / English 598 marketing report 6.6 
Spanish / English 562 software manuals 5.5 
Korean / English 615 military manuals 3.9 

ing function may not be injective. To interpolate injective bitext maps, nonmonotonic 
segments must be encapsulated in Minimum Enclosing Rectangles (MERs), as shown 
in Figure 9. A unique bitext map results from interpolating between the lower left and 
upper right comers of the MER, instead of using the nonmonotonic correspondence 
points. 

6. Evaluation of  SIMR 

SIMR's parameters were optimized by simulated annealing, as described in the pre- 
vious section• A separate optimization was performed on separate training bitexts for 
each of three language pairs. SIMR was then evaluated on previously unseen test 
bitexts in the three language pairs• The objective function for optimization and the 
evaluation metric were the root mean squared distance, in characters, between each 
TPC and the interpolated bitext map produced by SIMR, where the distance was mea- 
sured perpendicular to the main diagonal• Tables 2 and 3 report SIMR's errors on the 
training and test bitexts, respectively• 

The TBM samples used for training and testing were derived from segment align- 
ments. All the bitexts had been manually aligned by bilingual annotators (Melamed 
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Table 3 
SIMR error estimates on different text genres in three language pairs. 

Language Pair Bitext or Genre Number of RMS Error 
Test TPCs in Characters 

French / English parliamentary debates 7,123 5.7 
CITI technical reports 365, 305, 176 4.4, 2.6, 9.9 
other technical reports 561, 1,393 21, 14 

court transcripts 1,377 3.9 
U.N. annual report 2,049 12 

I.L.O. report 7,129 6.4 

Spanish / English software manuals 376, 151, 100, 349 4.6, 0.67, 5.2, 4.7 

Korean / English military manuals 40, 88, 186, 299 2.6, 7.1, 25, 7.8 
military messages 192 0.53 

1997). The alignments were converted into sets of coordinates in the bitext space by 
pairing the character positions at the ends of aligned segment pairs. This TBM sam- 
pling method artificially reduced the error estimates. Most of the aligned segments 
were sentences, which ended with a period. Whenever SIMR matched the periods 
correctly, the interpolated bitext map was pulled close to the TPC, even though it 
may have been much farther off in the middle of the sentence. Thus, the results in 
Table 3 should be considered only relative to each other and to other results obtained 
under the same experimental conditions. It would be impressive indeed if any bitext 
mapping algorithm's actual RMS error were less than 1 character on bitexts involving 
languages with different word order, such as English/Korean. 

The matching predicates for French/English and Spanish/English relied on an 
LCSR threshold to find cognates. The Korean text contained some Roman character 
strings, so the matching predicate for Korean/English generated candidate points of 
correspondence whenever one of these strings coordinated in the search rectangle 
with an identical string in the English half of the bitext. A seed translation lexicon 
was also used to strengthen the Korean/English signal. In addition, English, French, 
Spanish and Korean stop lists were used to prevent matches of closed-class words. 
The translation lexicon and stop lists had been previously developed independently 
of the training and test bitexts. 

The French/English part of the evaluation was performed on bitexts from the pub- 
licly available corpus de bi-texte anglais-franfais (BAF) (Simard and Plamondon 1996). 
SIMR's error distribution on the "parliamentary debates" bitext in this collection is 
given in Table 4. This distribution can be compared to the error distributions reported 
for the same test set by Dagan, Church, and Gale (1993), who reported parts of their 
error distribution in words, rather than in characters: "In 55% of the cases, there is 
no error in word_align's output (distance of 0), in 73% the distance from the correct 
alignment is at most 1, and in 84% the distance is at most 3" (Dagan, Church, and 
Gale 1993, 7). These distances were measured horizontally from the bitext map rather 
than perpendicularly to the main diagonal. Given the bitext slope for that bitext and a 
conservative estimate of 6 characters per word (including the space between words), 
each horizontal word of error corresponds to just over 4 characters of error perpendic- 
ular to the main diagonal. Thus, Dagan, Church, and Gale's "no error" is the same as 

122 



Melamed Bitext Maps and Alignment  

Table 4 
SIMR's error distribution on the French/English "parl iamentary debates" bitext. Errors were 
measured perpendicular  to the main diagonal. 

Number  of Test Points Error Range in Characters Fraction of Test Points 

1 -101 .0001 
2 -80 to -70 .0003 
1 -70 to -60 .0001 
5 -60 to -50 .0007 
4 -50 to -40 .0006 
6 -40 to -30 .0008 
9 -30 to -20 .0013 

29 -20 to -10 .0041 
3,057 -10 to 0 .4292 
3,902 0 to 10 .5478 

43 10 to 20 .0060 
28 20 to 30 .0039 ~ 
17 30 to 40 .0024 
5 40 to 50 .0007 
8 50 to 60 .0011 
1 60 to 70 .0001 
1 70 to 80 .0001 
1 80 to 90 .0001 
1 90 to 100 .0001 
1 110 to 120 .0001 
1 185 .0001 

7,123 -101 to 185 1.000 

Table 5 
Comparison of error distributions for SIMR and word_align on the par l iamentary debates 
bitext. 

Error of at Most Error of at Most Error of at Most 
Algori thm 2 Characters 6 Characters 14 Characters 

word_align 55% 73% 84% 
SIMR 93% 97% 98% 

2 cha rac t e r s  of  e r ro r  or  less,  i.e., less  t h a n  ha l f  a w o r d .  O n e  w o r d  of  e r ro r  is the  s a m e  
as  an  e r ro r  of  u p  to  6 cha rac t e r s  a n d  3 w o r d s  are  e q u i v a l e n t  to 4 . 3 ½  = 14 charac te r s .  
O n  this  bas is ,  Table  5 c o m p a r e s  the  a c c u r a c y  of  S IMR a n d  w o r d _ a l i g n .  5 

A n o t h e r  i n t e r e s t i n g  c o m p a r i s o n  is in  t e r m s  of  m a x i m u m  error .  C e r t a i n  a p p l i c a t i o n s  
of  b i t ex t  m a p s ,  such  as  the  one  d e s c r i b e d  b y  M e l a m e d  (1996a), c an  to l e ra t e  m a n y  s m a l l  
e r ro r s  b u t  n o  l a rge  ones .  A s  s h o w n  in Table 4, S IMR' s  b i t ex t  m a p  w a s  n e v e r  off b y  
m o r e  t h a n  185 cha rac t e r s  f r o m  a n y  of  the  7,123 s e g m e n t  b o u n d a r i e s .  185 c ha ra c t e r s  
is a b o u t  1.5 t i m e s  the  l e n g t h  of  a n  a v e r a g e  s en t ence  ( M e l a m e d  1996a). The  i n p u t  to 
w o r d _ a l i g n  is the  o u t p u t  of  c h a r _ a l i g n  a n d  D a g a n ,  C h u r c h ,  a n d  Ga le  (1993) h a v e  
r e p o r t e d  tha t  w o r d _ a l i g n  c a n n o t  e s c a p e  f r o m  c h a r _ a l i g n ' s  w o r s t  e r rors .  A n  i n d e p e n -  
d e n t  i m p l e m e n t a t i o n  of  c h a r _ a l i g n  (Miche l  S ima rd ,  p e r s o n a l  c o m m u n i c a t i o n )  e r r e d  
b y  m o r e  t h a n  one  t h o u s a n d  cha rac t e r s  on  the  s a m e  bi text .  

5 Error measurements at the character level are less susceptible to random variation than measurements 
at the word level. Character-level measurements also have the advantage of being universally 
applicable to all languages, including those in which words are difficult to identify automatically. 

123 



Computational Linguistics Volume 25, Number 1 

The Spanish/English and Korean/English bitexts were hand-aligned when SIMR 
was being ported to these language pairs. 6 The Spanish/English bitexts were drawn 
from the Sun Solaris AnswerBooks and hand-aligned by Philip Resnik. The Korean/ 
English bitexts were provided by MIT's Lincoln Laboratories and hand-aligned by 
Young-Suk Lee. Table 3 shows that SIMR's performance on Spanish/English and Ko- 
rean/English bitexts is no worse than its performance on French/English bitexts. 

The results in Table 3 were obtained using a version of SIMR that included all 
the enhancements described in Section 4.6. It is interesting to consider the degree 
to which each enhancement improves performance. I remapped the French/English 
bitexts listed in Table 3 with two stripped-down versions of SIMR. One version was 
basic SIMR without any enhancements. The other version incorporated overlapping 
chains, but performed only one search pass. The deterioration in performance varied 
widely. For example, on the parliamentary debates bitext, the RMS error rose from 5.7 
to 16 when only one search pass was allowed, but rose only another 2 points to 18 using 
non-overlapping chains. In contrast, on the U.N. annual report bitext, the extra search 
passes made no difference at all but non-overlapping chains increased the RMS error 
from 12 to 40. For most of the Other bitexts, each enhancement reduced the RMS error 
by a few characters, compared to the basic version. However, the improvement was 
not universal: the RMS error of the basic SIMR was 19 for the "other technical report" 
on which the enhanced SIMR scored 21. The expected value of the enhancements is 
difficult to predict, because each enhancement is aimed at solving a particular pattern 
recognition problem, and each problem may or may not occur in a given bitext. The 
relationship between geometric patterns in TPC chains and syntactic properties of 
bitexts is a ripe research topic. 

7. Alignment 

SIMR has no idea that words are often used to make sentences. It just outputs a series 
of corresponding token positions, leaving users free to draw their own conclusions 
about how the texts' larger units correspond. However, many existing translators' tools 
and machine translation strategies depend on aligned sentences or other aligned text 
segments. What can SIMR do for them? Formally, an alignment is a correspondence 
relation that does not permit crossing correspondences. The rest of this article presents 
the Geometric Segment Alignment (GSA) algorithm, which uses segment boundary 
information to reduce the correspondence relation in SIMR's output to a segment 
alignment. The GSA algorithm can be applied equally well to sentences, paragraphs, 
lists of items, or any other text units for which boundary information is available. 

7.1 Correspondence is Richer than Alignment 
A set of correspondence points, supplemented with segment boundary information, 
expresses segment correspondence, which is a richer representation than segment 
alignment. Figure 10 illustrates how segment boundaries form a grid over the bitext 
space. Each cell in the grid represents the intersection of two segments, one from each 
half of the bitext. A point of correspondence inside cell (X,y) indicates that some token 
in segment X corresponds with some token in segment y; i.e., segments X and y corre- 
spond. For example, Figure 10 indicates that segment e corresponds with segments G 
and H. 

In contrast to a correspondence relation, "an alignment is a segmentation of the 

6 The porting method is detailed elsewhere (Melamed 1996c, 1997, 1998b). 
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Figure 10 
Segment boundaries form a grid over the bitext space. Each cell in the grid represents the 
product of two segments, one from each half of the bitext. A point of correspondence inside 
cell (X,y) indicates that some token in segment X corresponds with some token in segment y; 
i.e., the segments X and y correspond. So, for example, segment E corresponds with 
segment d. The aligned blocks are outlined with solid lines. 

two texts such that the nth segment of one text is the translation of the nth segment of 
the other" (Simard, Foster, and Isabelle 1992, 68). For example, given the token corre- 
spondences in Figure 10, the segment (G,H / should be aligned with the segment (e,f/. If 
segments ( X 1 , . . . ,  Xnl  align with segments/Yl . . . . .  Yn)" then ( ( X  1 . . . . .  Xnl"  (Yl . . . . .  Yn/) 
is an aligned block. In geometric terms, aligned blocks are rectangular regions of the 
bitext space, such that the sides of the rectangles coincide with segment boundaries, 
and such that no two rectangles overlap either vertically or horizontally. The aligned 
blocks in Figure 10 are outlined with solid lines. 

SIMR's initial output has more expressive power than the alignment that can be 
derived from it. One illustration of this difference is that segment correspondence can 
represent order inversions, but segment alignment cannot. Inversions occur surpris- 
ingly often in real bitexts, even for sentence-size segments (Church 1993). Figure 10 
provides another illustration. If, instead of the point in cell (H,e), there was a point 
in cell (G,tf), the correct alignment for that region would still be ((G,H/, (e,f/). If there 
were points of correspondence in both (H,e) and (G,f), the correct alignment would 
still be the same. Yet, the three cases are clearly different. If a lexicographer wanted to 
see a word in segment G in its bilingual context, it would be useful to know whether 
segment f is relevant. 

7.2 The Geometric Segment Alignment (GSA) Algorithm 
Given a sequence of segment boundaries for each half of a bitext, the Geometric Seg- 
ment Alignment (GSA) algorithm reduces sets of correspondence points to segment 
alignments. The algorithm's first step is to perform a transitive closure over the in- 
put correspondence relation. For instance, if the input contains (G,e), (H,e), and (H,f), 
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then GSA adds the pairing (G,f). Next, GSA forces all segments to be contiguous: If 
segment Y corresponds with segments x and z, but not y, the pairing (Y,y) is added. 
In geometric terms, these two operations arrange all cells that contain points of corre- 
spondence into nonoverlapping rectangles, while adding as few cells as possible. The 
result is an alignment relation. 

A complete set of TPCs, together with appropriate boundary information, guar- 
antees a perfect alignment. Alas, the points of correspondence postulated by SIMR are 
neither complete nor noise-free. SIMR makes errors of omission and errors of commis- 
sion. Fortunately, the noise in SIMR's output causes alignment errors in predictable 
ways. GSA employs several backing-off heuristics to reduce the number of errors. 

Typical errors of commission are stray points of correspondence like the one in 
cell (H,e) in Figure 10. This point indicates that /G,H/ and ~e,f / should form a 2x2 
aligned block, whereas the lengths of the component segments suggest that a pair of 
l x  I blocks is more likely. In a separate development bitext, I have found that SIMR 
is usually wrong in these cases. To reduce such errors, GSA asks Gale & Church's 
length-based alignment algorithm (Gale and Church 1991a; Michel Simard, personal 
communication) for a second opinion on any aligned block that is not l x  1. When- 
ever the length-based algorithm prefers a more fine-grained alignment, its judgement 
overrules SIMR's. 

Typical errors of omission are illustrated in Figure 10 by the complete absence 
of correspondence points between segments /B,C,D/ and ~b,c/. This empty block of 
segments is sandwiched between aligned blocks. It is highly likely that at least some 
of these segments are mutual translations, despite SIMR's failure to find any points of 
correspondence between them. Therefore, GSA treats all sandwiched empty blocks as 
aligned blocks. If an empty block is not I x 1, GSA realigns it using Gale and Church's 
length-based algorithm, just as it would realign any other many-to-many aligned 
block. 

The most problematic cases involve an error of omission adjacent to an error of 
commission, as in blocks (// , /hi) and (/J,K/,/i/). If the point in cell (J,i) should re- 
ally be in cell (J,h), then realignment inside the erroneous blocks would not solve the 
problem. A naive solution is to merge these blocks and then to realign them using a 
length-based method. Unfortunately, this kind of alignment pattern, i.e., 0 x I followed 
by 2x 1, is surprisingly often correct. Length-based methods assign low probabilities 
to such pattern sequences and usually get them wrong. Therefore, GSA also con- 
siders the confidence level with which the length-based alignment algorithm reports 
its realignment. If this confidence level is sufficiently high, GSA accepts the length- 
based realignment; otherwise, the alignment indicated by SIMR's points of correspon- 
dence is retained. The minimum confidence at which GSA trusts the length-based re- 
alignment is a GSA parameter, which has been optimized on a separate development 
bitext. 

8. Evaluat ion  of  G S A  

GSA processed two bitext maps produced by SIMR using two different matching 
predicates. The first matching predicate relied only on cognates that pass a certain 
LCSR threshold, as described in Section 4.2. The second matching predicate was like 
the first, except that it also generated a point of correspondence whenever the input 
token pair appeared as an entry in a translation lexicon. The translation lexicon was 
automatically extracted from an MRBD (Cousin et al. 1991). 

Bitexts involving millions of segments are becoming more and more common. 
Before comparing bitext alignment algorithms in terms of accuracy, it is important 
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Table 6 
Comparison of bitext alignment algorithms' accuracy. One error is counted for each aligned 
block in the reference alignment that is missing from the test alignment. 

Errors, Given Errors, Not Given 
Bitext Algorithm Aligned Paragraphs % Aligned Paragraphs % 

"easy" 
Hansard 

(n = 7,123) 

Gale and Church (1991a) not available 128 1.8 
Simard, Foster, and Isabelle (1992) 114 1.6 171 2.4 

S1MR/GSA 104 1.5 115 1.6 
SIMR/GSA with MRBD 80 1.1 90 1.3 

"hard" 
Hansard 

(n = 2,693) 

Gale and Church (1991a) not available 80 3.0 
Simard, Foster, and Isabelle (1992) 50 1.9 102 3.8 

SIMR/GSA 50 1.9 61 2.3 
SIMR/GSA with MRBD 45 1.7 48 1.8 

to compare their asymptotic running times. In order to run a quadratic-time align- 
ment algorithm in a reasonable amount of time on a large bitext, the bitext must be 
presegmented into a set of smaller bitexts. When a bitext contains no easily recogniz- 
able "anchors," such as paragraphs or sections, this first-pass alignment must be done 
manually. 

Given a reasonably good bitext map, GSA's expected running time is linear in the 
number of input segment boundaries. In all the bitexts on which GSA was trained 
and tested, the points of correspondence in SIMR's output were sufficiently dense 
and accurate that GSA backed off to a quadratic-time alignment algorithm only for 
very small aligned blocks. For example, when the seed translation lexicon was used in 
SIMR's matching predicate, the largest aligned block that needed to be realigned was 
5x5 segments. Without the seed translation lexicon, the largest realigned block was 
7x7 segments. Thus, GSA can obviate the need to manually prealign large bitexts. 

Table 6 compares GSA's accuracy on the "easy" and "hard" French/English bi- 
texts with the accuracy of two other alignment algorithms, as reported by Simard, 
Foster, and Isabelle (1992). The error metric counts one error for each aligned block 
in the reference alignment that is missing from the test alignment. To account for the 
possibility of modularizing the overall alignment task into paragraph alignment fol- 
lowed by sentence alignment, Simard, Foster, and Isabelle (1992) have reported the 
accuracy of their sentence alignment algorithm when a perfect alignment at the para- 
graph level is given. SIMR/GSA was also tested in this manner, to enable the second 
set of comparisons in Table 6. 

Due to the scarcity of hand-aligned training bitexts at my disposal, GSA's backing- 
off heuristics are somewhat ad hoc. Even so, GSA performs at least as well as, and 
usually better than, other alignment algorithms for which comparable results have 
been published. Chen (1996) has also published a quantitative evaluation of his align- 
ment algorithm on these reference bitexts, but his evaluation was done post hoc. Since 
the results in this article are based on a gold standard, they are not comparable to 
Chen's results. Among other reasons, error rates based on a gold standard are some- 
times inflated by errors in the gold standard and this was indeed the case for the gold 
standard used here (see Melamed [1996a]). It is also an open question whether GSA 
performs better than the algorithm proposed by Wu (1994). The two algorithms have 
not yet been evaluated on the same test data. For now, I can offer only a theoretical 
reason why SIMR+GSA should be more accurate than the algorithms of Chen and 
Wu: Bitext maps lead to alignment more directly than a translation model (Chen 1996) 
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or a translation lexicon (Wu 1994), because both segment alignments and bitext maps 
are relations between token instances, rather than between token types. 

More important than GSA's current accuracy is GSA's potential accuracy. With 
a bigger development bitext, more effective backing-off heuristics can be developed. 
Better input can also make a difference: GSA's accuracy will improve in lockstep with 
SIMR's accuracy. 

9. Conclus ion  

The Smooth Injective Map Recognizer (SIMR) is based on innovative approaches to 
each of the three main components of a bitext mapping algorithm: signal generation, 
noise •tering, and search. The advances in signal generation stemmed from the use of 
word-based matching predicates. When word-pair coordinates are plotted in a Carte- 
sian bitext space, the geometric heuristics of existing sentence alignment algorithms 
can be exploited just as easily and to a greater extent at the word level. The cognate 
heuristic of character-based bitext mapping algorithms also works better at the word 
level, because cognateness can be defined more precisely in terms of words, e.g., using 
the Longest Common Subsequence Ratio. Most importantly, matching heuristics based 
on existing translation lexicons can be defined only at the word level. When neither 
cognates nor sentence boundaries can be found, we can still map bitexts in any pair of 
languages using a small hand-constructed translation lexicon. To complement word- 
based matching predicates, I have proposed localized noise filtering. Localized noise 
filters are more accurate than global ones because they are sensitive to local variations 
in noise distributions. The combination of a strong signal and an accurate noise filter 
enables localized search heuristics. Localized search heuristics can directly exploit the 
geometric tendencies of TPC chains in order to search the bitext space in linear space 
and time. This level of efficiency is particularly important for large bitexts. 

SIMR also advances the state of the art of bitext mapping on several other crite- 
ria. Evaluation on preexisting gold standards has shown that SIMR can map bitexts 
with high accuracy in a variety of language pairs and text genres, without getting 
lost. SIMR is robust in the face of translation irregularities like omissions and allows 
crossing correspondences to account for word-order differences. SIMR encapsulates 
its language-specific heuristics, so that it can be ported to any language pair with a 
minimal effort (Melamed 1997). These features make SIMR one of the most widely 
applicable bitext mapping algorithms published to date. 

For applications that require it, SIMR's bitext maps can be efficiently reduced 
to segment alignments, using the Geometric Segment Alignment (GSA) algorithm 
presented here. Admittedly, GSA is only useful when a good bitext map is available. 
In such cases, there are three reasons to favor GSA over other options for alignment: 
One, it is simply more accurate. Two, its expected running time is linear in the size 
of the bitext. Therefore, three, it is not necessary to manually prealign large bitexts 
before input to GSA. 

There are numerous ways to improve on the methods presented here. If SIMR can 
be reparameterized so that its parameters are pairwise independent, then it may be 
possible to optimize these parameters analytically, or at least within a well-founded 
probabilistic framework. Likewise, the parameters in GSA's backing-off heuristics and 
the heuristics themselves were partially dictated by the scarcity of suitable training 
data at the time that GSA was being developed. All of this is to say that the details 
of the current implementations of SIMR and GSA are less important than the general 
approach to bitext mapping advocated here. 
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